This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/nodes/geometry/node_geometry_tree.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

126 lines
4.2 KiB
C++
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <cstring>
#include "MEM_guardedalloc.h"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
#include "NOD_geometry.h"
#include "BKE_context.h"
#include "BKE_layer.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BLT_translation.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "DNA_space_types.h"
#include "RNA_access.h"
#include "RNA_prototypes.h"
#include "UI_resources.h"
#include "node_common.h"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
bNodeTreeType *ntreeType_Geometry;
static void geometry_node_tree_get_from_context(const bContext *C,
bNodeTreeType *UNUSED(treetype),
bNodeTree **r_ntree,
ID **r_id,
ID **r_from)
{
ViewLayer *view_layer = CTX_data_view_layer(C);
Object *ob = BKE_view_layer_active_object_get(view_layer);
if (ob == nullptr) {
return;
}
const ModifierData *md = BKE_object_active_modifier(ob);
if (md == nullptr) {
return;
}
if (md->type == eModifierType_Nodes) {
NodesModifierData *nmd = (NodesModifierData *)md;
if (nmd->node_group != nullptr) {
*r_from = &ob->id;
*r_id = &ob->id;
*r_ntree = nmd->node_group;
}
}
}
static void geometry_node_tree_update(bNodeTree *ntree)
{
ntreeSetOutput(ntree);
/* Needed to give correct types to reroutes. */
ntree_update_reroute_nodes(ntree);
}
static void foreach_nodeclass(Scene *UNUSED(scene), void *calldata, bNodeClassCallback func)
{
func(calldata, NODE_CLASS_INPUT, N_("Input"));
func(calldata, NODE_CLASS_GEOMETRY, N_("Geometry"));
func(calldata, NODE_CLASS_ATTRIBUTE, N_("Attribute"));
func(calldata, NODE_CLASS_OP_COLOR, N_("Color"));
func(calldata, NODE_CLASS_OP_VECTOR, N_("Vector"));
func(calldata, NODE_CLASS_CONVERTER, N_("Converter"));
func(calldata, NODE_CLASS_LAYOUT, N_("Layout"));
}
static bool geometry_node_tree_validate_link(eNodeSocketDatatype type_a,
eNodeSocketDatatype type_b)
{
/* Geometry, string, object, material, texture and collection sockets can only be connected to
* themselves. The other types can be converted between each other. */
if (ELEM(type_a, SOCK_FLOAT, SOCK_VECTOR, SOCK_RGBA, SOCK_BOOLEAN, SOCK_INT) &&
ELEM(type_b, SOCK_FLOAT, SOCK_VECTOR, SOCK_RGBA, SOCK_BOOLEAN, SOCK_INT)) {
return true;
}
return type_a == type_b;
}
Nodes: Adds button to groups to change type of sockets. The menu lists all socket types that are valid for the node tree. Changing a socket type updates all instances of the group and keeps existing links to the socket. If changing the socket type leads to incorrect node connections the links are flagged as invalid (red) and ignored but not removed. This is so users don't lose information and can then fix resulting issues. For example: Changing a Color socket to a Shader socket can cause an invalid Shader-to-Color connection. Implementation details: The new `NODE_OT_tree_socket_change_type` operator uses the generic `rna_node_socket_type_itemf` function to list all eligible socket types. It uses the tree type's `valid_socket_type` callback to test for valid types. In addition it also checks the subtype, because multiple RNA types are registered for the same base type. The `valid_socket_type` callback has been modified slightly to accept full socket types instead of just the base type enum, so that custom (python) socket types can be used by this operator. The `nodeModifySocketType` function is now called when group nodes encounter a socket type mismatch, instead of replacing the socket entirely. This ensures that links are kept to/from group nodes as well as group input/output nodes. The `nodeModifySocketType` function now also takes a full `bNodeSocketType` instead of just the base and subtype enum (a shortcut `nodeModifySocketTypeStatic` exists for when only static types are used). Differential Revision: https://developer.blender.org/D10912
2021-07-06 18:36:11 +01:00
static bool geometry_node_tree_socket_type_valid(bNodeTreeType *UNUSED(ntreetype),
bNodeSocketType *socket_type)
{
Nodes: Adds button to groups to change type of sockets. The menu lists all socket types that are valid for the node tree. Changing a socket type updates all instances of the group and keeps existing links to the socket. If changing the socket type leads to incorrect node connections the links are flagged as invalid (red) and ignored but not removed. This is so users don't lose information and can then fix resulting issues. For example: Changing a Color socket to a Shader socket can cause an invalid Shader-to-Color connection. Implementation details: The new `NODE_OT_tree_socket_change_type` operator uses the generic `rna_node_socket_type_itemf` function to list all eligible socket types. It uses the tree type's `valid_socket_type` callback to test for valid types. In addition it also checks the subtype, because multiple RNA types are registered for the same base type. The `valid_socket_type` callback has been modified slightly to accept full socket types instead of just the base type enum, so that custom (python) socket types can be used by this operator. The `nodeModifySocketType` function is now called when group nodes encounter a socket type mismatch, instead of replacing the socket entirely. This ensures that links are kept to/from group nodes as well as group input/output nodes. The `nodeModifySocketType` function now also takes a full `bNodeSocketType` instead of just the base and subtype enum (a shortcut `nodeModifySocketTypeStatic` exists for when only static types are used). Differential Revision: https://developer.blender.org/D10912
2021-07-06 18:36:11 +01:00
return nodeIsStaticSocketType(socket_type) && ELEM(socket_type->type,
SOCK_FLOAT,
SOCK_VECTOR,
SOCK_RGBA,
SOCK_BOOLEAN,
SOCK_INT,
SOCK_STRING,
SOCK_OBJECT,
SOCK_GEOMETRY,
SOCK_COLLECTION,
SOCK_TEXTURE,
SOCK_IMAGE,
Nodes: Adds button to groups to change type of sockets. The menu lists all socket types that are valid for the node tree. Changing a socket type updates all instances of the group and keeps existing links to the socket. If changing the socket type leads to incorrect node connections the links are flagged as invalid (red) and ignored but not removed. This is so users don't lose information and can then fix resulting issues. For example: Changing a Color socket to a Shader socket can cause an invalid Shader-to-Color connection. Implementation details: The new `NODE_OT_tree_socket_change_type` operator uses the generic `rna_node_socket_type_itemf` function to list all eligible socket types. It uses the tree type's `valid_socket_type` callback to test for valid types. In addition it also checks the subtype, because multiple RNA types are registered for the same base type. The `valid_socket_type` callback has been modified slightly to accept full socket types instead of just the base type enum, so that custom (python) socket types can be used by this operator. The `nodeModifySocketType` function is now called when group nodes encounter a socket type mismatch, instead of replacing the socket entirely. This ensures that links are kept to/from group nodes as well as group input/output nodes. The `nodeModifySocketType` function now also takes a full `bNodeSocketType` instead of just the base and subtype enum (a shortcut `nodeModifySocketTypeStatic` exists for when only static types are used). Differential Revision: https://developer.blender.org/D10912
2021-07-06 18:36:11 +01:00
SOCK_MATERIAL);
}
2021-12-07 23:12:13 -05:00
void register_node_tree_type_geo()
{
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
bNodeTreeType *tt = ntreeType_Geometry = static_cast<bNodeTreeType *>(
MEM_callocN(sizeof(bNodeTreeType), "geometry node tree type"));
tt->type = NTREE_GEOMETRY;
strcpy(tt->idname, "GeometryNodeTree");
strcpy(tt->group_idname, "GeometryNodeGroup");
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
strcpy(tt->ui_name, N_("Geometry Node Editor"));
tt->ui_icon = ICON_GEOMETRY_NODES;
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
strcpy(tt->ui_description, N_("Geometry nodes"));
tt->rna_ext.srna = &RNA_GeometryNodeTree;
tt->update = geometry_node_tree_update;
tt->get_from_context = geometry_node_tree_get_from_context;
tt->foreach_nodeclass = foreach_nodeclass;
tt->valid_socket_type = geometry_node_tree_socket_type_valid;
tt->validate_link = geometry_node_tree_validate_link;
ntreeTypeAdd(tt);
}