This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/NOD_node_tree_multi_function.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

430 lines
12 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup nodes
*
* This file allows you to generate a multi-function network from a user-generated node tree.
*/
#include "FN_multi_function_builder.hh"
#include "FN_multi_function_network.hh"
#include "NOD_derived_node_tree.hh"
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
#include "NOD_type_callbacks.hh"
#include "BLI_resource_collector.hh"
namespace blender::nodes {
/**
* A MFNetworkTreeMap maps various components of a DerivedNodeTree to components of a
* fn::MFNetwork. This is necessary for further processing of a multi-function network that has
* been generated from a node tree.
*/
class MFNetworkTreeMap {
private:
/**
* Store by id instead of using a hash table to avoid unnecessary hash table lookups.
*
* Input sockets in a node tree can have multiple corresponding sockets in the generated
* MFNetwork. This is because nodes are allowed to expand into multiple multi-function nodes.
*/
2020-07-10 14:40:23 +02:00
const DerivedNodeTree &tree_;
fn::MFNetwork &network_;
Array<Vector<fn::MFSocket *, 1>> sockets_by_dsocket_id_;
Array<fn::MFOutputSocket *> socket_by_group_input_id_;
public:
MFNetworkTreeMap(const DerivedNodeTree &tree, fn::MFNetwork &network)
2020-07-10 14:40:23 +02:00
: tree_(tree),
network_(network),
sockets_by_dsocket_id_(tree.sockets().size()),
socket_by_group_input_id_(tree.group_inputs().size(), nullptr)
{
}
const DerivedNodeTree &tree() const
{
2020-07-10 14:40:23 +02:00
return tree_;
}
const fn::MFNetwork &network() const
{
2020-07-10 14:40:23 +02:00
return network_;
}
2020-07-12 10:01:37 +02:00
fn::MFNetwork &network()
{
return network_;
}
void add(const DSocket &dsocket, fn::MFSocket &socket)
{
BLI_assert(dsocket.is_input() == socket.is_input());
BLI_assert(dsocket.is_input() || sockets_by_dsocket_id_[dsocket.id()].size() == 0);
2020-07-10 14:40:23 +02:00
sockets_by_dsocket_id_[dsocket.id()].append(&socket);
}
void add(const DInputSocket &dsocket, fn::MFInputSocket &socket)
{
2020-07-10 14:40:23 +02:00
sockets_by_dsocket_id_[dsocket.id()].append(&socket);
}
void add(const DOutputSocket &dsocket, fn::MFOutputSocket &socket)
{
/* There can be at most one matching output socket. */
BLI_assert(sockets_by_dsocket_id_[dsocket.id()].size() == 0);
2020-07-10 14:40:23 +02:00
sockets_by_dsocket_id_[dsocket.id()].append(&socket);
}
void add(Span<const DInputSocket *> dsockets, Span<fn::MFInputSocket *> sockets)
{
assert_same_size(dsockets, sockets);
for (int i : dsockets.index_range()) {
this->add(*dsockets[i], *sockets[i]);
}
}
void add(Span<const DOutputSocket *> dsockets, Span<fn::MFOutputSocket *> sockets)
{
assert_same_size(dsockets, sockets);
for (int i : dsockets.index_range()) {
this->add(*dsockets[i], *sockets[i]);
}
}
void add(const DGroupInput &group_input, fn::MFOutputSocket &socket)
{
2020-07-10 14:40:23 +02:00
BLI_assert(socket_by_group_input_id_[group_input.id()] == nullptr);
socket_by_group_input_id_[group_input.id()] = &socket;
}
void add_try_match(const DNode &dnode, fn::MFNode &node)
{
this->add_try_match(dnode.inputs().cast<const DSocket *>(),
node.inputs().cast<fn::MFSocket *>());
this->add_try_match(dnode.outputs().cast<const DSocket *>(),
node.outputs().cast<fn::MFSocket *>());
}
void add_try_match(Span<const DInputSocket *> dsockets, Span<fn::MFInputSocket *> sockets)
{
this->add_try_match(dsockets.cast<const DSocket *>(), sockets.cast<fn::MFSocket *>());
}
void add_try_match(Span<const DOutputSocket *> dsockets, Span<fn::MFOutputSocket *> sockets)
{
this->add_try_match(dsockets.cast<const DSocket *>(), sockets.cast<fn::MFSocket *>());
}
void add_try_match(Span<const DSocket *> dsockets, Span<fn::MFSocket *> sockets)
{
int used_sockets = 0;
for (const DSocket *dsocket : dsockets) {
if (!dsocket->is_available()) {
continue;
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
if (!socket_is_mf_data_socket(*dsocket->bsocket()->typeinfo)) {
continue;
}
fn::MFSocket *socket = sockets[used_sockets];
this->add(*dsocket, *socket);
used_sockets++;
}
}
fn::MFOutputSocket &lookup(const DGroupInput &group_input)
{
2020-07-10 14:40:23 +02:00
fn::MFOutputSocket *socket = socket_by_group_input_id_[group_input.id()];
BLI_assert(socket != nullptr);
return *socket;
}
fn::MFOutputSocket &lookup(const DOutputSocket &dsocket)
{
2020-07-10 14:40:23 +02:00
auto &sockets = sockets_by_dsocket_id_[dsocket.id()];
BLI_assert(sockets.size() == 1);
return sockets[0]->as_output();
}
Span<fn::MFInputSocket *> lookup(const DInputSocket &dsocket)
{
2020-07-10 14:40:23 +02:00
return sockets_by_dsocket_id_[dsocket.id()].as_span().cast<fn::MFInputSocket *>();
}
fn::MFInputSocket &lookup_dummy(const DInputSocket &dsocket)
{
Span<fn::MFInputSocket *> sockets = this->lookup(dsocket);
BLI_assert(sockets.size() == 1);
fn::MFInputSocket &socket = *sockets[0];
BLI_assert(socket.node().is_dummy());
return socket;
}
fn::MFOutputSocket &lookup_dummy(const DOutputSocket &dsocket)
{
fn::MFOutputSocket &socket = this->lookup(dsocket);
BLI_assert(socket.node().is_dummy());
return socket;
}
bool is_mapped(const DSocket &dsocket) const
{
2020-07-10 14:40:23 +02:00
return sockets_by_dsocket_id_[dsocket.id()].size() >= 1;
}
};
/**
* This data is necessary throughout the generation of a MFNetwork from a node tree.
*/
struct CommonMFNetworkBuilderData {
ResourceCollector &resources;
fn::MFNetwork &network;
MFNetworkTreeMap &network_map;
const DerivedNodeTree &tree;
};
class MFNetworkBuilderBase {
protected:
2020-07-10 14:40:23 +02:00
CommonMFNetworkBuilderData &common_;
public:
2020-07-10 14:40:23 +02:00
MFNetworkBuilderBase(CommonMFNetworkBuilderData &common) : common_(common)
{
}
/**
* Returns the network that is currently being built.
*/
fn::MFNetwork &network()
{
2020-07-10 14:40:23 +02:00
return common_.network;
}
/**
* Returns the map between the node tree and the multi-function network that is being built.
*/
MFNetworkTreeMap &network_map()
{
2020-07-10 14:40:23 +02:00
return common_.network_map;
}
/**
* Returns a resource collector that will only be destructed after the multi-function network is
* destructed.
*/
ResourceCollector &resources()
{
2020-07-10 14:40:23 +02:00
return common_.resources;
}
/**
* Constructs a new function that will live at least as long as the MFNetwork.
*/
template<typename T, typename... Args> T &construct_fn(Args &&... args)
{
BLI_STATIC_ASSERT((std::is_base_of_v<fn::MultiFunction, T>), "");
2020-07-10 14:40:23 +02:00
void *buffer = common_.resources.linear_allocator().allocate(sizeof(T), alignof(T));
T *fn = new (buffer) T(std::forward<Args>(args)...);
common_.resources.add(destruct_ptr<T>(fn), fn->name().c_str());
return *fn;
}
};
/**
* This class is used by socket implementations to define how an unlinked input socket is handled
* in a multi-function network.
*/
class SocketMFNetworkBuilder : public MFNetworkBuilderBase {
private:
2020-07-10 14:40:23 +02:00
bNodeSocket *bsocket_;
fn::MFOutputSocket *built_socket_ = nullptr;
public:
SocketMFNetworkBuilder(CommonMFNetworkBuilderData &common, const DSocket &dsocket)
: MFNetworkBuilderBase(common), bsocket_(dsocket.bsocket())
{
}
SocketMFNetworkBuilder(CommonMFNetworkBuilderData &common, const DGroupInput &group_input)
: MFNetworkBuilderBase(common), bsocket_(group_input.bsocket())
{
}
/**
* Returns the socket that is currently being built.
*/
bNodeSocket &bsocket()
{
2020-07-10 14:40:23 +02:00
return *bsocket_;
}
/**
* Utility method that returns bsocket->default_value for the current socket.
*/
template<typename T> T *socket_default_value()
{
return static_cast<T *>(bsocket_->default_value);
}
/**
* Builds a function node for that socket that outputs the given constant value.
*/
template<typename T> void set_constant_value(T value)
{
this->construct_generator_fn<fn::CustomMF_Constant<T>>(std::move(value));
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
void set_constant_value(const CPPType &type, const void *value)
{
/* The value has live as long as the generated mf network. */
this->construct_generator_fn<fn::CustomMF_GenericConstant>(type, value);
}
template<typename T, typename... Args> void construct_generator_fn(Args &&... args)
{
const fn::MultiFunction &fn = this->construct_fn<T>(std::forward<Args>(args)...);
this->set_generator_fn(fn);
}
/**
* Uses the first output of the given multi-function as value of the socket.
*/
void set_generator_fn(const fn::MultiFunction &fn)
{
2020-07-10 14:40:23 +02:00
fn::MFFunctionNode &node = common_.network.add_function(fn);
this->set_socket(node.output(0));
}
/**
* Define a multi-function socket that outputs the value of the bsocket.
*/
void set_socket(fn::MFOutputSocket &socket)
{
2020-07-10 14:40:23 +02:00
built_socket_ = &socket;
}
fn::MFOutputSocket *built_socket()
{
2020-07-10 14:40:23 +02:00
return built_socket_;
}
};
/**
* This class is used by node implementations to define how a user-level node expands into
* multi-function nodes internally.
*/
class NodeMFNetworkBuilder : public MFNetworkBuilderBase {
private:
const DNode &dnode_;
public:
NodeMFNetworkBuilder(CommonMFNetworkBuilderData &common, const DNode &dnode)
: MFNetworkBuilderBase(common), dnode_(dnode)
{
}
/**
* Tells the builder to build a function that corresponds to the node that is being built. It
* will try to match up sockets.
*/
template<typename T, typename... Args> T &construct_and_set_matching_fn(Args &&... args)
{
T &function = this->construct_fn<T>(std::forward<Args>(args)...);
this->set_matching_fn(function);
return function;
}
const fn::MultiFunction &get_not_implemented_fn()
{
return this->get_default_fn("Not Implemented (" + dnode_.name() + ")");
}
const fn::MultiFunction &get_default_fn(StringRef name);
const void set_not_implemented()
{
this->set_matching_fn(this->get_not_implemented_fn());
}
/**
* Tells the builder that the given function corresponds to the node that is being built. It will
* try to match up sockets. For that it skips unavailable and non-data sockets.
*/
void set_matching_fn(const fn::MultiFunction &function)
{
2020-07-10 14:40:23 +02:00
fn::MFFunctionNode &node = common_.network.add_function(function);
common_.network_map.add_try_match(dnode_, node);
}
/**
* Returns the node that is currently being built.
*/
bNode &bnode()
{
return *dnode_.node_ref().bnode();
}
/**
* Returns the node that is currently being built.
*/
const DNode &dnode() const
{
return dnode_;
}
};
MFNetworkTreeMap insert_node_tree_into_mf_network(fn::MFNetwork &network,
const DerivedNodeTree &tree,
ResourceCollector &resources);
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
using MultiFunctionByNode = Map<const DNode *, const fn::MultiFunction *>;
MultiFunctionByNode get_multi_function_per_node(const DerivedNodeTree &tree,
ResourceCollector &resources);
class DataTypeConversions {
private:
Map<std::pair<fn::MFDataType, fn::MFDataType>, const fn::MultiFunction *> conversions_;
public:
void add(fn::MFDataType from_type, fn::MFDataType to_type, const fn::MultiFunction &fn)
{
conversions_.add_new({from_type, to_type}, &fn);
}
const fn::MultiFunction *get_conversion(fn::MFDataType from, fn::MFDataType to) const
{
return conversions_.lookup_default({from, to}, nullptr);
}
bool is_convertible(const CPPType &from_type, const CPPType &to_type) const
{
return conversions_.contains(
{fn::MFDataType::ForSingle(from_type), fn::MFDataType::ForSingle(to_type)});
}
void convert(const CPPType &from_type,
const CPPType &to_type,
const void *from_value,
void *to_value) const;
};
const DataTypeConversions &get_implicit_type_conversions();
} // namespace blender::nodes