This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_draw.c

1693 lines
49 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Utility functions for dealing with OpenGL texture & material context,
* mipmap generation and light objects.
*
* These are some obscure rendering functions shared between the game engine (not anymore)
* and the blender, in this module to avoid duplication
* and abstract them away from the rest a bit.
2011-02-27 20:25:53 +00:00
*/
#include <string.h>
#include "BLI_blenlib.h"
#include "BLI_boxpack_2d.h"
#include "BLI_linklist.h"
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
Changes to Color Management After testing and feedback, I've decided to slightly modify the way color management works internally. While the previous method worked well for rendering, was a smaller transition and had some advantages over this new method, it was a bit more ambiguous, and was making things difficult for other areas such as compositing. This implementation now considers all color data (with only a couple of exceptions such as brush colors) to be stored in linear RGB color space, rather than sRGB as previously. This brings it in line with Nuke, which also operates this way, quite successfully. Color swatches, pickers, color ramp display are now gamma corrected to display gamma so you can see what you're doing, but the numbers themselves are considered linear. This makes understanding blending modes more clear (a 0.5 value on overlay will not change the result now) as well as making color swatches act more predictably in the compositor, however bringing over color values from applications like photoshop or gimp, that operate in a gamma space, will give identical results. This commit will convert over existing files saved by earlier 2.5 versions to work generally the same, though there may be some slight differences with things like textures. Now that we're set on changing other areas of shading, this won't be too disruptive overall. I've made a diagram explaining the pipeline here: http://mke3.net/blender/devel/2.5/25_linear_workflow_pipeline.png and some docs here: http://www.blender.org/development/release-logs/blender-250/color-management/
2009-12-02 07:56:34 +00:00
#include "DNA_image_types.h"
#include "DNA_movieclip_types.h"
#include "DNA_userdef_types.h"
#include "MEM_guardedalloc.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "BKE_movieclip.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_platform.h"
#include "GPU_texture.h"
#include "PIL_time.h"
static void gpu_free_image_immediate(Image *ima);
//* Checking powers of two for images since OpenGL ES requires it */
2017-03-02 00:36:33 +11:00
#ifdef WITH_DDS
2017-02-23 11:03:56 +01:00
static bool is_power_of_2_resolution(int w, int h)
{
return is_power_of_2_i(w) && is_power_of_2_i(h);
}
2017-03-02 00:36:33 +11:00
#endif
static bool is_over_resolution_limit(GLenum textarget, int w, int h)
{
int size = (textarget == GL_TEXTURE_CUBE_MAP) ? GPU_max_cube_map_size() : GPU_max_texture_size();
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, size) : size;
return (w > reslimit || h > reslimit);
}
static int smaller_power_of_2_limit(int num)
{
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, GPU_max_texture_size()) :
GPU_max_texture_size();
/* take texture clamping into account */
2019-04-22 09:32:37 +10:00
if (num > reslimit) {
return reslimit;
2019-04-22 09:32:37 +10:00
}
return power_of_2_min_i(num);
}
/* Current OpenGL state caching for GPU_set_tpage */
static struct GPUTextureState {
/* also controls min/mag filtering */
bool domipmap;
/* only use when 'domipmap' is set */
bool linearmipmap;
/* store this so that new images created while texture painting won't be set to mipmapped */
bool texpaint;
float anisotropic;
} GTS = {1, 0, 0, 1.0f};
/* Mipmap settings */
void GPU_set_mipmap(Main *bmain, bool mipmap)
{
if (GTS.domipmap != mipmap) {
GPU_free_images(bmain);
GTS.domipmap = mipmap;
}
}
2015-04-28 01:03:28 +10:00
void GPU_set_linear_mipmap(bool linear)
{
if (GTS.linearmipmap != linear) {
GTS.linearmipmap = linear;
}
}
2015-04-28 01:03:28 +10:00
bool GPU_get_mipmap(void)
{
return GTS.domipmap && !GTS.texpaint;
}
2015-04-28 01:03:28 +10:00
bool GPU_get_linear_mipmap(void)
{
return GTS.linearmipmap;
}
2015-04-28 01:03:28 +10:00
static GLenum gpu_get_mipmap_filter(bool mag)
{
/* linearmipmap is off by default *when mipmapping is off,
* use unfiltered display */
if (mag) {
2019-04-22 09:32:37 +10:00
if (GTS.domipmap) {
return GL_LINEAR;
2019-04-22 09:32:37 +10:00
}
else {
return GL_NEAREST;
2019-04-22 09:32:37 +10:00
}
}
else {
if (GTS.domipmap) {
if (GTS.linearmipmap) {
return GL_LINEAR_MIPMAP_LINEAR;
}
else {
return GL_LINEAR_MIPMAP_NEAREST;
}
}
else {
return GL_NEAREST;
}
}
}
/* Anisotropic filtering settings */
void GPU_set_anisotropic(Main *bmain, float value)
{
if (GTS.anisotropic != value) {
GPU_free_images(bmain);
/* Clamp value to the maximum value the graphics card supports */
const float max = GPU_max_texture_anisotropy();
2019-04-22 09:32:37 +10:00
if (value > max) {
value = max;
2019-04-22 09:32:37 +10:00
}
GTS.anisotropic = value;
}
}
float GPU_get_anisotropic(void)
{
return GTS.anisotropic;
}
/* Set OpenGL state for an MTFace */
static GPUTexture **gpu_get_image_gputexture(Image *ima, GLenum textarget)
{
2019-04-22 09:32:37 +10:00
if (textarget == GL_TEXTURE_2D) {
return &ima->gputexture[TEXTARGET_TEXTURE_2D];
2019-04-22 09:32:37 +10:00
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &ima->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
}
else if (textarget == GL_TEXTURE_2D_ARRAY) {
return &ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY];
}
else if (textarget == GL_TEXTURE_1D_ARRAY) {
return &ima->gputexture[TEXTARGET_TEXTURE_TILE_MAPPING];
2019-04-22 09:32:37 +10:00
}
return NULL;
}
static uint gpu_texture_create_tile_mapping(Image *ima)
{
GPUTexture *tilearray = ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY];
if (tilearray == NULL) {
return 0;
}
float array_w = GPU_texture_width(tilearray);
float array_h = GPU_texture_height(tilearray);
ImageTile *last_tile = ima->tiles.last;
/* Tiles are sorted by number. */
int max_tile = last_tile->tile_number - 1001;
/* create image */
int bindcode;
glGenTextures(1, (GLuint *)&bindcode);
glBindTexture(GL_TEXTURE_1D_ARRAY, bindcode);
int width = max_tile + 1;
float *data = MEM_callocN(width * 8 * sizeof(float), __func__);
for (int i = 0; i < width; i++) {
data[4 * i] = -1.0f;
}
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int i = tile->tile_number - 1001;
data[4 * i] = tile->runtime.tilearray_layer;
float *tile_info = &data[4 * width + 4 * i];
tile_info[0] = tile->runtime.tilearray_offset[0] / array_w;
tile_info[1] = tile->runtime.tilearray_offset[1] / array_h;
tile_info[2] = tile->runtime.tilearray_size[0] / array_w;
tile_info[3] = tile->runtime.tilearray_size[1] / array_h;
}
glTexImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_RGBA32F, width, 2, 0, GL_RGBA, GL_FLOAT, data);
MEM_freeN(data);
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_1D_ARRAY, 0);
return bindcode;
}
typedef struct PackTile {
FixedSizeBoxPack boxpack;
ImageTile *tile;
float pack_score;
} PackTile;
static int compare_packtile(const void *a, const void *b)
{
const PackTile *tile_a = a;
const PackTile *tile_b = b;
return tile_a->pack_score < tile_b->pack_score;
}
static uint gpu_texture_create_tile_array(Image *ima, ImBuf *main_ibuf)
{
int arraywidth = 0, arrayheight = 0;
ListBase boxes = {NULL};
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
PackTile *packtile = MEM_callocN(sizeof(PackTile), __func__);
packtile->tile = tile;
packtile->boxpack.w = ibuf->x;
packtile->boxpack.h = ibuf->y;
if (is_over_resolution_limit(
GL_TEXTURE_2D_ARRAY, packtile->boxpack.w, packtile->boxpack.h)) {
packtile->boxpack.w = smaller_power_of_2_limit(packtile->boxpack.w);
packtile->boxpack.h = smaller_power_of_2_limit(packtile->boxpack.h);
}
arraywidth = max_ii(arraywidth, packtile->boxpack.w);
arrayheight = max_ii(arrayheight, packtile->boxpack.h);
/* We sort the tiles by decreasing size, with an additional penalty term
* for high aspect ratios. This improves packing efficiency. */
float w = packtile->boxpack.w, h = packtile->boxpack.h;
packtile->pack_score = max_ff(w, h) / min_ff(w, h) * w * h;
BKE_image_release_ibuf(ima, ibuf, NULL);
BLI_addtail(&boxes, packtile);
}
}
BLI_assert(arraywidth > 0 && arrayheight > 0);
BLI_listbase_sort(&boxes, compare_packtile);
int arraylayers = 0;
/* Keep adding layers until all tiles are packed. */
while (boxes.first != NULL) {
ListBase packed = {NULL};
BLI_box_pack_2d_fixedarea(&boxes, arraywidth, arrayheight, &packed);
BLI_assert(packed.first != NULL);
LISTBASE_FOREACH (PackTile *, packtile, &packed) {
ImageTile *tile = packtile->tile;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
tileoffset[0] = packtile->boxpack.x;
tileoffset[1] = packtile->boxpack.y;
tilesize[0] = packtile->boxpack.w;
tilesize[1] = packtile->boxpack.h;
tile->runtime.tilearray_layer = arraylayers;
}
BLI_freelistN(&packed);
arraylayers++;
}
/* create image */
int bindcode;
glGenTextures(1, (GLuint *)&bindcode);
glBindTexture(GL_TEXTURE_2D_ARRAY, bindcode);
GLenum data_type, internal_format;
if (main_ibuf->rect_float) {
data_type = GL_FLOAT;
internal_format = GL_RGBA16F;
}
else {
data_type = GL_UNSIGNED_BYTE;
internal_format = GL_RGBA8;
if (!IMB_colormanagement_space_is_data(main_ibuf->rect_colorspace) &&
!IMB_colormanagement_space_is_scene_linear(main_ibuf->rect_colorspace)) {
internal_format = GL_SRGB8_ALPHA8;
}
}
glTexImage3D(GL_TEXTURE_2D_ARRAY,
0,
internal_format,
arraywidth,
arrayheight,
arraylayers,
0,
GL_RGBA,
data_type,
NULL);
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int tilelayer = tile->runtime.tilearray_layer;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
if (tilesize[0] == 0 || tilesize[1] == 0) {
continue;
}
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
bool needs_scale = (ibuf->x != tilesize[0] || ibuf->y != tilesize[1]);
ImBuf *scale_ibuf = NULL;
if (ibuf->rect_float) {
float *rect_float = ibuf->rect_float;
const bool store_premultiplied = ima->alpha_mode != IMA_ALPHA_STRAIGHT;
if (ibuf->channels != 4 || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__);
IMB_colormanagement_imbuf_to_float_texture(
rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied);
}
float *pixeldata = rect_float;
if (needs_scale) {
scale_ibuf = IMB_allocFromBuffer(NULL, rect_float, ibuf->x, ibuf->y, 4);
IMB_scaleImBuf(scale_ibuf, tilesize[0], tilesize[1]);
pixeldata = scale_ibuf->rect_float;
}
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
tileoffset[0],
tileoffset[1],
tilelayer,
tilesize[0],
tilesize[1],
1,
GL_RGBA,
GL_FLOAT,
pixeldata);
if (rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
}
else {
unsigned int *rect = ibuf->rect;
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__);
IMB_colormanagement_imbuf_to_byte_texture((uchar *)rect,
0,
0,
ibuf->x,
ibuf->y,
ibuf,
internal_format == GL_SRGB8_ALPHA8,
ima->alpha_mode == IMA_ALPHA_PREMUL);
}
unsigned int *pixeldata = rect;
if (needs_scale) {
scale_ibuf = IMB_allocFromBuffer(rect, NULL, ibuf->x, ibuf->y, 4);
IMB_scaleImBuf(scale_ibuf, tilesize[0], tilesize[1]);
pixeldata = scale_ibuf->rect;
}
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
tileoffset[0],
tileoffset[1],
tilelayer,
tilesize[0],
tilesize[1],
1,
GL_RGBA,
GL_UNSIGNED_BYTE,
pixeldata);
if (rect != ibuf->rect) {
MEM_freeN(rect);
}
}
if (scale_ibuf != NULL) {
IMB_freeImBuf(scale_ibuf);
}
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D_ARRAY);
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
else {
glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
if (GLEW_EXT_texture_filter_anisotropic) {
glTexParameterf(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
}
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
return bindcode;
}
static uint gpu_texture_create_from_ibuf(Image *ima, ImBuf *ibuf, int textarget)
{
uint bindcode = 0;
const bool mipmap = GPU_get_mipmap();
#ifdef WITH_DDS
if (ibuf->ftype == IMB_FTYPE_DDS) {
/* DDS is loaded directly in compressed form. */
GPU_create_gl_tex_compressed(&bindcode, textarget, ima, ibuf);
return bindcode;
}
#endif
/* Regular uncompressed texture. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
bool compress_as_srgb = false;
if (rect_float == NULL) {
/* Byte image is in original colorspace from the file. If the file is sRGB
* scene linear, or non-color data no conversion is needed. Otherwise we
* compress as scene linear + sRGB transfer function to avoid precision loss
* in common cases.
*
* We must also convert to premultiplied for correct texture interpolation
* and consistency with float images. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__);
if (rect == NULL) {
return bindcode;
}
/* Texture storage of images is defined by the alpha mode of the image. The
* downside of this is that there can be artifacts near alpha edges. However,
* this allows us to use sRGB texture formats and preserves color values in
* zero alpha areas, and appears generally closer to what game engines that we
* want to be compatible with do. */
const bool store_premultiplied = ima ? (ima->alpha_mode == IMA_ALPHA_PREMUL) : true;
IMB_colormanagement_imbuf_to_byte_texture(
rect, 0, 0, ibuf->x, ibuf->y, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float image is already in scene linear colorspace or non-color data by
* convention, no colorspace conversion needed. But we do require 4 channels
* currently. */
const bool store_premultiplied = ima ? (ima->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
if (ibuf->channels != 4 || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__);
if (rect_float == NULL) {
return bindcode;
}
IMB_colormanagement_imbuf_to_float_texture(
rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied);
}
}
/* Create OpenGL texture. */
GPU_create_gl_tex(&bindcode,
(uint *)rect,
rect_float,
ibuf->x,
ibuf->y,
textarget,
mipmap,
compress_as_srgb,
ima);
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
return bindcode;
}
static GPUTexture **gpu_get_movieclip_gputexture(MovieClip *clip,
MovieClipUser *cuser,
GLenum textarget)
{
MovieClip_RuntimeGPUTexture *tex;
for (tex = clip->runtime.gputextures.first; tex; tex = tex->next) {
if (memcmp(&tex->user, cuser, sizeof(MovieClipUser)) == 0) {
break;
}
}
if (tex == NULL) {
tex = MEM_mallocN(sizeof(MovieClip_RuntimeGPUTexture), __func__);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
tex->gputexture[i] = NULL;
}
memcpy(&tex->user, cuser, sizeof(MovieClipUser));
BLI_addtail(&clip->runtime.gputextures, tex);
}
2019-06-22 23:06:02 +10:00
if (textarget == GL_TEXTURE_2D) {
return &tex->gputexture[TEXTARGET_TEXTURE_2D];
2019-06-22 23:06:02 +10:00
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &tex->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
2019-06-22 23:06:02 +10:00
}
return NULL;
}
static ImBuf *update_do_scale(uchar *rect,
float *rect_float,
int *x,
int *y,
int *w,
int *h,
int limit_w,
int limit_h,
int full_w,
int full_h)
{
/* Partial update with scaling. */
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
int part_w = *w, part_h = *h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
*x *= xratio;
*y *= yratio;
*w = (int)ceil(xratio * (*w));
*h = (int)ceil(yratio * (*h));
/* ...but take back if we are over the limit! */
if (*x + *w > limit_w) {
(*w)--;
}
if (*y + *h > limit_h) {
(*h)--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, part_w, part_h, 4);
IMB_scaleImBuf(ibuf, *w, *h);
return ibuf;
}
static void gpu_texture_update_scaled_array(uchar *rect,
float *rect_float,
int full_w,
int full_h,
int x,
int y,
int layer,
const int *tile_offset,
const int *tile_size,
int w,
int h)
{
ImBuf *ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, tile_size[0], tile_size[1], full_w, full_h);
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
if (ibuf->rect_float) {
glTexSubImage3D(
GL_TEXTURE_2D_ARRAY, 0, x, y, layer, w, h, 1, GL_RGBA, GL_FLOAT, ibuf->rect_float);
}
else {
glTexSubImage3D(
GL_TEXTURE_2D_ARRAY, 0, x, y, layer, w, h, 1, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect);
}
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_scaled(
uchar *rect, float *rect_float, int full_w, int full_h, int x, int y, int w, int h)
{
/* Partial update with scaling. */
int limit_w = smaller_power_of_2_limit(full_w);
int limit_h = smaller_power_of_2_limit(full_h);
ImBuf *ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, limit_w, limit_h, full_w, full_h);
if (ibuf->rect_float) {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, ibuf->rect_float);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect);
}
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(uchar *rect,
float *rect_float,
int x,
int y,
int layer,
int w,
int h,
GLint tex_stride,
GLint tex_offset)
{
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GLint row_length;
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &row_length);
glPixelStorei(GL_UNPACK_ROW_LENGTH, tex_stride);
if (layer >= 0) {
if (rect_float == NULL) {
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
x,
y,
layer,
w,
h,
1,
GL_RGBA,
GL_UNSIGNED_BYTE,
rect + tex_offset);
}
else {
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
x,
y,
layer,
w,
h,
1,
GL_RGBA,
GL_FLOAT,
rect_float + tex_offset);
}
}
else {
if (rect_float == NULL) {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, rect + tex_offset);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, rect_float + tex_offset);
}
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, row_length);
}
static void gpu_texture_update_from_ibuf(
GPUTexture *tex, Image *ima, ImBuf *ibuf, ImageTile *tile, int x, int y, int w, int h)
{
/* Partial update of texture for texture painting. This is often much
* quicker than fully updating the texture for high resolution images. */
GPU_texture_bind(tex, 0);
bool scaled;
if (tile != NULL) {
int *tilesize = tile->runtime.tilearray_size;
scaled = (ibuf->x != tilesize[0]) || (ibuf->y != tilesize[1]);
}
else {
scaled = is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y);
}
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
GLint tex_stride = ibuf->x;
GLint tex_offset = ibuf->channels * (y * ibuf->x + x);
if (rect_float == NULL) {
/* Byte pixels. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(
ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * w * h, __func__);
if (rect == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
const bool store_premultiplied = (ima->alpha_mode == IMA_ALPHA_PREMUL);
IMB_colormanagement_imbuf_to_byte_texture(
rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float pixels. */
const bool store_premultiplied = (ima->alpha_mode != IMA_ALPHA_STRAIGHT);
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * w * h, __func__);
if (rect_float == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_scaled_array(
rect, rect_float, ibuf->x, ibuf->y, x, y, tilelayer, tileoffset, tilesize, w, h);
}
else {
gpu_texture_update_scaled(rect, rect_float, ibuf->x, ibuf->y, x, y, w, h);
}
}
else {
/* Fast update at same resolution. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_unscaled(rect,
rect_float,
x + tileoffset[0],
y + tileoffset[1],
tilelayer,
w,
h,
tex_stride,
tex_offset);
}
else {
gpu_texture_update_unscaled(rect, rect_float, x, y, -1, w, h, tex_stride, tex_offset);
}
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
if (GPU_get_mipmap()) {
glGenerateMipmap((tile != NULL) ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
/* Get the GPUTexture for a given `Image`.
*
* `iuser` and `ibuf` are mutual exclusive parameters. The caller can pass the `ibuf` when already
* available. It is also required when requesting the GPUTexture for a render result. */
GPUTexture *GPU_texture_from_blender(Image *ima, ImageUser *iuser, ImBuf *ibuf, int textarget)
{
if (ima == NULL) {
return NULL;
}
/* currently, gpu refresh tagging is used by ima sequences */
if (ima->gpuflag & IMA_GPU_REFRESH) {
gpu_free_image_immediate(ima);
ima->gpuflag &= ~IMA_GPU_REFRESH;
}
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
/* Test if we already have a texture. */
GPUTexture **tex = gpu_get_image_gputexture(ima, textarget);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bindcode so we don't keep trying. */
uint bindcode = 0;
ImageTile *tile = BKE_image_get_tile(ima, 0);
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
if (tile->ok == 0) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf_intern = ibuf;
if (ibuf_intern == NULL) {
ibuf_intern = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf_intern == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
}
if (textarget == GL_TEXTURE_2D_ARRAY) {
bindcode = gpu_texture_create_tile_array(ima, ibuf_intern);
}
else if (textarget == GL_TEXTURE_1D_ARRAY) {
bindcode = gpu_texture_create_tile_mapping(ima);
}
else {
bindcode = gpu_texture_create_from_ibuf(ima, ibuf_intern, textarget);
}
/* if `ibuf` was given, we don't own the `ibuf_intern` */
if (ibuf == NULL) {
BKE_image_release_ibuf(ima, ibuf_intern, NULL);
}
*tex = GPU_texture_from_bindcode(textarget, bindcode);
GPU_texture_orig_size_set(*tex, ibuf_intern->x, ibuf_intern->y);
return *tex;
}
GPUTexture *GPU_texture_from_movieclip(MovieClip *clip, MovieClipUser *cuser, int textarget)
{
if (clip == NULL) {
return NULL;
}
GPUTexture **tex = gpu_get_movieclip_gputexture(clip, cuser, textarget);
if (*tex) {
return *tex;
}
/* check if we have a valid image buffer */
uint bindcode = 0;
ImBuf *ibuf = BKE_movieclip_get_ibuf(clip, cuser);
if (ibuf == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
bindcode = gpu_texture_create_from_ibuf(NULL, ibuf, textarget);
IMB_freeImBuf(ibuf);
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
void GPU_free_texture_movieclip(struct MovieClip *clip)
{
/* number of gpu textures to keep around as cache
* We don't want to keep too many GPU textures for
* movie clips around, as they can be large.*/
const int MOVIECLIP_NUM_GPUTEXTURES = 1;
while (BLI_listbase_count(&clip->runtime.gputextures) > MOVIECLIP_NUM_GPUTEXTURES) {
MovieClip_RuntimeGPUTexture *tex = BLI_pophead(&clip->runtime.gputextures);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (tex->gputexture[i]) {
GPU_texture_free(tex->gputexture[i]);
tex->gputexture[i] = NULL;
}
}
MEM_freeN(tex);
}
}
static void **gpu_gen_cube_map(uint *rect, float *frect, int rectw, int recth)
{
size_t block_size = frect ? sizeof(float[4]) : sizeof(uchar[4]);
void **sides = NULL;
int h = recth / 2;
int w = rectw / 3;
if (w != h) {
return sides;
2019-04-22 09:32:37 +10:00
}
/* PosX, NegX, PosY, NegY, PosZ, NegZ */
sides = MEM_mallocN(sizeof(void *) * 6, "");
2019-04-22 09:32:37 +10:00
for (int i = 0; i < 6; i++) {
sides[i] = MEM_mallocN(block_size * w * h, "");
2019-04-22 09:32:37 +10:00
}
/* divide image into six parts */
/* ______________________
* | | | |
* | NegX | NegY | PosX |
* |______|______|______|
* | | | |
* | NegZ | PosZ | PosY |
* |______|______|______|
*/
if (frect) {
float(*frectb)[4] = (float(*)[4])frect;
float(**fsides)[4] = (float(**)[4])sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size);
memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size);
memcpy(
&fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size);
memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size);
}
memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w);
memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w);
}
}
else {
uint **isides = (uint **)sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x];
isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x];
isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x];
isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x];
}
memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w);
memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w);
}
}
return sides;
}
static void gpu_del_cube_map(void **cube_map)
{
int i;
2019-04-22 09:32:37 +10:00
if (cube_map == NULL) {
return;
2019-04-22 09:32:37 +10:00
}
for (i = 0; i < 6; i++) {
MEM_freeN(cube_map[i]);
2019-04-22 09:32:37 +10:00
}
MEM_freeN(cube_map);
}
/* Image *ima can be NULL */
void GPU_create_gl_tex(uint *bind,
uint *rect,
float *frect,
int rectw,
int recth,
int textarget,
bool mipmap,
bool use_srgb,
Image *ima)
{
ImBuf *ibuf = NULL;
if (textarget == GL_TEXTURE_2D && is_over_resolution_limit(textarget, rectw, recth)) {
int tpx = rectw;
int tpy = recth;
rectw = smaller_power_of_2_limit(rectw);
recth = smaller_power_of_2_limit(recth);
if (frect) {
ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
frect = ibuf->rect_float;
}
else {
ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
rect = ibuf->rect;
}
}
/* create image */
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
GLenum internal_format = (frect) ? GL_RGBA16F : (use_srgb) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
if (textarget == GL_TEXTURE_2D) {
if (frect) {
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect);
}
else {
glTexImage2D(
GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
2019-04-22 09:32:37 +10:00
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
2019-04-22 09:32:37 +10:00
}
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
int w = rectw / 3, h = recth / 2;
if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) {
void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth);
GLenum type = frect ? GL_FLOAT : GL_UNSIGNED_BYTE;
2019-04-22 09:32:37 +10:00
if (cube_map) {
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
0,
internal_format,
w,
h,
0,
GL_RGBA,
type,
cube_map[i]);
2019-04-22 09:32:37 +10:00
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
2019-04-22 09:32:37 +10:00
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
2019-04-22 09:32:37 +10:00
}
}
else {
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gpu_del_cube_map(cube_map);
}
else {
printf("Incorrect envmap size\n");
}
}
2019-04-22 09:32:37 +10:00
if (GLEW_EXT_texture_filter_anisotropic) {
glTexParameterf(textarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
2019-04-22 09:32:37 +10:00
}
glBindTexture(textarget, 0);
2019-04-22 09:32:37 +10:00
if (ibuf) {
IMB_freeImBuf(ibuf);
2019-04-22 09:32:37 +10:00
}
}
/**
* GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go.
* This is so the viewport and the BGE can share some code.
* Returns false if the provided ImBuf doesn't have a supported DXT compression format
*/
bool GPU_upload_dxt_texture(ImBuf *ibuf, bool use_srgb)
{
#ifdef WITH_DDS
GLint format = 0;
int blocksize, height, width, i, size, offset = 0;
width = ibuf->x;
height = ibuf->y;
if (GLEW_EXT_texture_compression_s3tc) {
2019-04-22 09:32:37 +10:00
if (ibuf->dds_data.fourcc == FOURCC_DXT1) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
2019-04-22 09:32:37 +10:00
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT3) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
2019-04-22 09:32:37 +10:00
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT5) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
2019-04-22 09:32:37 +10:00
}
}
if (format == 0) {
fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n");
return false;
}
if (!is_power_of_2_resolution(width, height)) {
fprintf(
stderr,
"Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n");
return false;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
2019-04-22 09:32:37 +10:00
if (GLEW_EXT_texture_filter_anisotropic) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
2019-04-22 09:32:37 +10:00
}
blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16;
for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); i++) {
2019-04-22 09:32:37 +10:00
if (width == 0) {
width = 1;
2019-04-22 09:32:37 +10:00
}
if (height == 0) {
height = 1;
2019-04-22 09:32:37 +10:00
}
size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize;
glCompressedTexImage2D(
GL_TEXTURE_2D, i, format, width, height, 0, size, ibuf->dds_data.data + offset);
offset += size;
width >>= 1;
height >>= 1;
}
/* set number of mipmap levels we have, needed in case they don't go down to 1x1 */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1);
return true;
#else
2019-05-16 21:16:56 +10:00
UNUSED_VARS(ibuf, use_srgb);
return false;
#endif
}
void GPU_create_gl_tex_compressed(unsigned int *bind, int textarget, Image *ima, ImBuf *ibuf)
{
/* For DDS we only support data, scene linear and sRGB. Converting to
* different colorspace would break the compression. */
const bool use_srgb = !(IMB_colormanagement_space_is_data(ibuf->rect_colorspace) ||
IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace));
const bool mipmap = GPU_get_mipmap();
#ifndef WITH_DDS
(void)ibuf;
/* Fall back to uncompressed if DDS isn't enabled */
GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima);
#else
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf, use_srgb) == 0) {
glDeleteTextures(1, (GLuint *)bind);
GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima);
}
glBindTexture(textarget, 0);
#endif
}
/* these two functions are called on entering and exiting texture paint mode,
2012-03-09 18:28:30 +00:00
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void GPU_paint_set_mipmap(Main *bmain, bool mipmap)
{
2019-04-22 09:32:37 +10:00
if (!GTS.domipmap) {
return;
2019-04-22 09:32:37 +10:00
}
GTS.texpaint = !mipmap;
if (mipmap) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_TEXTURE_2D, TEXTARGET_TEXTURE_2D_ARRAY)) {
GPUTexture *tex = ima->gputexture[a];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
}
}
}
2019-04-22 09:32:37 +10:00
else {
GPU_free_image(ima);
2019-04-22 09:32:37 +10:00
}
}
2019-04-22 09:32:37 +10:00
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
2019-04-22 09:32:37 +10:00
}
}
}
else {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_TEXTURE_2D, TEXTARGET_TEXTURE_2D_ARRAY)) {
GPUTexture *tex = ima->gputexture[a];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
}
}
}
2019-04-22 09:32:37 +10:00
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
2019-04-22 09:32:37 +10:00
}
}
}
}
Multi-View and Stereo 3D Official Documentation: http://www.blender.org/manual/render/workflows/multiview.html Implemented Features ==================== Builtin Stereo Camera * Convergence Mode * Interocular Distance * Convergence Distance * Pivot Mode Viewport * Cameras * Plane * Volume Compositor * View Switch Node * Image Node Multi-View OpenEXR support Sequencer * Image/Movie Strips 'Use Multiview' UV/Image Editor * Option to see Multi-View images in Stereo-3D or its individual images * Save/Open Multi-View (OpenEXR, Stereo3D, individual views) images I/O * Save/Open Multi-View (OpenEXR, Stereo3D, individual views) images Scene Render Views * Ability to have an arbitrary number of views in the scene Missing Bits ============ First rule of Multi-View bug report: If something is not working as it should *when Views is off* this is a severe bug, do mention this in the report. Second rule is, if something works *when Views is off* but doesn't (or crashes) when *Views is on*, this is a important bug. Do mention this in the report. Everything else is likely small todos, and may wait until we are sure none of the above is happening. Apart from that there are those known issues: * Compositor Image Node poorly working for Multi-View OpenEXR (this was working prefectly before the 'Use Multi-View' functionality) * Selecting camera from Multi-View when looking from camera is problematic * Animation Playback (ctrl+F11) doesn't support stereo formats * Wrong filepath when trying to play back animated scene * Viewport Rendering doesn't support Multi-View * Overscan Rendering * Fullscreen display modes need to warn the user * Object copy should be aware of views suffix Acknowledgments =============== * Francesco Siddi for the help with the original feature specs and design * Brecht Van Lommel for the original review of the code and design early on * Blender Foundation for the Development Fund to support the project wrap up Final patch reviewers: * Antony Riakiotakis (psy-fi) * Campbell Barton (ideasman42) * Julian Eisel (Severin) * Sergey Sharybin (nazgul) * Thomas Dinged (dingto) Code contributors of the original branch in github: * Alexey Akishin * Gabriel Caraballo
2015-04-06 10:40:12 -03:00
void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
if ((ibuf == NULL) || (w == 0) || (h == 0)) {
/* Full reload of texture. */
GPU_free_image(ima);
}
GPUTexture *tex = ima->gputexture[TEXTARGET_TEXTURE_2D];
/* Check if we need to update the main gputexture. */
if (tex != NULL && tile == ima->tiles.first) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, NULL, x, y, w, h);
}
/* Check if we need to update the array gputexture. */
tex = ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY];
if (tex != NULL) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, tile, x, y, w, h);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
static LinkNode *image_free_queue = NULL;
static ThreadMutex img_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_queue_image_for_free(Image *ima)
{
BLI_mutex_lock(&img_queue_mutex);
BLI_linklist_prepend(&image_free_queue, ima);
BLI_mutex_unlock(&img_queue_mutex);
}
void GPU_free_unused_buffers(Main *bmain)
{
2019-04-22 09:32:37 +10:00
if (!BLI_thread_is_main()) {
return;
2019-04-22 09:32:37 +10:00
}
BLI_mutex_lock(&img_queue_mutex);
/* images */
for (LinkNode *node = image_free_queue; node; node = node->next) {
Image *ima = node->link;
/* check in case it was freed in the meantime */
2019-04-22 09:32:37 +10:00
if (bmain && BLI_findindex(&bmain->images, ima) != -1) {
GPU_free_image(ima);
2019-04-22 09:32:37 +10:00
}
}
BLI_linklist_free(image_free_queue, NULL);
image_free_queue = NULL;
BLI_mutex_unlock(&img_queue_mutex);
}
static void gpu_free_image_immediate(Image *ima)
{
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (ima->gputexture[i] != NULL) {
GPU_texture_free(ima->gputexture[i]);
ima->gputexture[i] = NULL;
}
}
ima->gpuflag &= ~(IMA_GPU_MIPMAP_COMPLETE);
}
void GPU_free_image(Image *ima)
{
if (!BLI_thread_is_main()) {
gpu_queue_image_for_free(ima);
return;
}
gpu_free_image_immediate(ima);
}
void GPU_free_images(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
GPU_free_image(ima);
}
}
}
/* same as above but only free animated images */
void GPU_free_images_anim(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_is_animated(ima)) {
GPU_free_image(ima);
}
}
}
}
void GPU_free_images_old(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
2019-04-22 09:32:37 +10:00
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
2019-04-22 09:32:37 +10:00
}
/* of course not! */
2019-04-22 09:32:37 +10:00
if (G.is_rendering) {
return;
2019-04-22 09:32:37 +10:00
}
lasttime = ctime;
Image *ima = bmain->images.first;
while (ima) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
GPU_free_image(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
ima = ima->id.next;
}
}
2018-02-15 18:03:55 +11:00
static void gpu_disable_multisample(void)
{
#ifdef __linux__
/* changing multisample from the default (enabled) causes problems on some
* systems (NVIDIA/Linux) when the pixel format doesn't have a multisample buffer */
bool toggle_ok = true;
if (GPU_type_matches(GPU_DEVICE_NVIDIA, GPU_OS_UNIX, GPU_DRIVER_ANY)) {
int samples = 0;
glGetIntegerv(GL_SAMPLES, &samples);
2019-04-22 09:32:37 +10:00
if (samples == 0) {
toggle_ok = false;
2019-04-22 09:32:37 +10:00
}
}
if (toggle_ok) {
glDisable(GL_MULTISAMPLE);
}
2015-11-24 02:20:38 -05:00
#else
glDisable(GL_MULTISAMPLE);
2015-11-24 02:20:38 -05:00
#endif
}
/* Default OpenGL State
*
* This is called on startup, for opengl offscreen render.
* Generally we should always return to this state when
* temporarily modifying the state for drawing, though that are (undocumented)
* exceptions that we should try to get rid of. */
void GPU_state_init(void)
{
GPU_program_point_size(false);
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_STENCIL_TEST);
glDepthRange(0.0, 1.0);
glFrontFace(GL_CCW);
glCullFace(GL_BACK);
glDisable(GL_CULL_FACE);
gpu_disable_multisample();
/* This is a bit dangerous since addons could change this. */
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex((GLuint)0xFFFFFFFF);
/* TODO: Should become default. But needs at least GL 4.3 */
if (GLEW_ARB_ES3_compatibility) {
/* Takes predecence over GL_PRIMITIVE_RESTART */
glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
}
}
/** \name Framebuffer color depth, for selection codes
* \{ */
#define STATE_STACK_DEPTH 16
typedef struct {
eGPUAttrMask mask;
/* GL_ENABLE_BIT */
uint is_blend : 1;
uint is_cull_face : 1;
uint is_depth_test : 1;
uint is_dither : 1;
uint is_lighting : 1;
uint is_line_smooth : 1;
uint is_color_logic_op : 1;
uint is_multisample : 1;
uint is_polygon_offset_line : 1;
uint is_polygon_offset_fill : 1;
uint is_polygon_smooth : 1;
uint is_sample_alpha_to_coverage : 1;
uint is_scissor_test : 1;
uint is_stencil_test : 1;
bool is_clip_plane[6];
/* GL_DEPTH_BUFFER_BIT */
/* uint is_depth_test : 1; */
int depth_func;
double depth_clear_value;
bool depth_write_mask;
/* GL_SCISSOR_BIT */
int scissor_box[4];
/* uint is_scissor_test : 1; */
/* GL_VIEWPORT_BIT */
int viewport[4];
double near_far[2];
} GPUAttrValues;
typedef struct {
GPUAttrValues attr_stack[STATE_STACK_DEPTH];
uint top;
} GPUAttrStack;
static GPUAttrStack state = {
.top = 0,
};
#define AttrStack state
#define Attr state.attr_stack[state.top]
/**
* Replacement for glPush/PopAttributes
*
* We don't need to cover all the options of legacy OpenGL
* but simply the ones used by Blender.
*/
void gpuPushAttr(eGPUAttrMask mask)
{
Attr.mask = mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
glGetIntegerv(GL_DEPTH_FUNC, &Attr.depth_func);
glGetDoublev(GL_DEPTH_CLEAR_VALUE, &Attr.depth_clear_value);
glGetBooleanv(GL_DEPTH_WRITEMASK, (GLboolean *)&Attr.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
Attr.is_blend = glIsEnabled(GL_BLEND);
for (int i = 0; i < 6; i++) {
Attr.is_clip_plane[i] = glIsEnabled(GL_CLIP_PLANE0 + i);
}
Attr.is_cull_face = glIsEnabled(GL_CULL_FACE);
Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
Attr.is_dither = glIsEnabled(GL_DITHER);
Attr.is_line_smooth = glIsEnabled(GL_LINE_SMOOTH);
Attr.is_color_logic_op = glIsEnabled(GL_COLOR_LOGIC_OP);
Attr.is_multisample = glIsEnabled(GL_MULTISAMPLE);
Attr.is_polygon_offset_line = glIsEnabled(GL_POLYGON_OFFSET_LINE);
Attr.is_polygon_offset_fill = glIsEnabled(GL_POLYGON_OFFSET_FILL);
Attr.is_polygon_smooth = glIsEnabled(GL_POLYGON_SMOOTH);
Attr.is_sample_alpha_to_coverage = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE);
Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
Attr.is_stencil_test = glIsEnabled(GL_STENCIL_TEST);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
glGetIntegerv(GL_SCISSOR_BOX, (GLint *)&Attr.scissor_box);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glGetDoublev(GL_DEPTH_RANGE, (GLdouble *)&Attr.near_far);
glGetIntegerv(GL_VIEWPORT, (GLint *)&Attr.viewport);
}
if ((mask & GPU_BLEND_BIT) != 0) {
Attr.is_blend = glIsEnabled(GL_BLEND);
}
BLI_assert(AttrStack.top < STATE_STACK_DEPTH);
AttrStack.top++;
}
2017-10-07 15:57:14 +11:00
static void restore_mask(GLenum cap, const bool value)
{
if (value) {
glEnable(cap);
}
else {
glDisable(cap);
}
}
void gpuPopAttr(void)
{
BLI_assert(AttrStack.top > 0);
AttrStack.top--;
GLint mask = Attr.mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
restore_mask(GL_DEPTH_TEST, Attr.is_depth_test);
glDepthFunc(Attr.depth_func);
glClearDepth(Attr.depth_clear_value);
glDepthMask(Attr.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
restore_mask(GL_BLEND, Attr.is_blend);
for (int i = 0; i < 6; i++) {
restore_mask(GL_CLIP_PLANE0 + i, Attr.is_clip_plane[i]);
}
restore_mask(GL_CULL_FACE, Attr.is_cull_face);
restore_mask(GL_DEPTH_TEST, Attr.is_depth_test);
restore_mask(GL_DITHER, Attr.is_dither);
restore_mask(GL_LINE_SMOOTH, Attr.is_line_smooth);
restore_mask(GL_COLOR_LOGIC_OP, Attr.is_color_logic_op);
restore_mask(GL_MULTISAMPLE, Attr.is_multisample);
restore_mask(GL_POLYGON_OFFSET_LINE, Attr.is_polygon_offset_line);
restore_mask(GL_POLYGON_OFFSET_FILL, Attr.is_polygon_offset_fill);
restore_mask(GL_POLYGON_SMOOTH, Attr.is_polygon_smooth);
restore_mask(GL_SAMPLE_ALPHA_TO_COVERAGE, Attr.is_sample_alpha_to_coverage);
restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test);
restore_mask(GL_STENCIL_TEST, Attr.is_stencil_test);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glViewport(Attr.viewport[0], Attr.viewport[1], Attr.viewport[2], Attr.viewport[3]);
glDepthRange(Attr.near_far[0], Attr.near_far[1]);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test);
glScissor(Attr.scissor_box[0], Attr.scissor_box[1], Attr.scissor_box[2], Attr.scissor_box[3]);
}
if ((mask & GPU_BLEND_BIT) != 0) {
restore_mask(GL_BLEND, Attr.is_blend);
}
}
#undef Attr
#undef AttrStack
/** \} */