This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/blender_interface/BlenderStrokeRenderer.cpp

494 lines
14 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2010 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/freestyle/intern/blender_interface/BlenderStrokeRenderer.cpp
* \ingroup freestyle
*/
#include "BlenderStrokeRenderer.h"
#include "BlenderTextureManager.h"
#include "../application/AppConfig.h"
#include "../stroke/Canvas.h"
// XXX Are those "ifdef __cplusplus" useful here?
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#ifdef __cplusplus
extern "C" {
#endif
#include "MEM_guardedalloc.h"
#include "DNA_camera_types.h"
#include "DNA_customdata_types.h"
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "DNA_screen_types.h"
#include "BKE_customdata.h"
#include "BKE_global.h"
#include "BKE_library.h" /* free_libblock */
#include "BKE_main.h" /* struct Main */
#include "BKE_material.h"
#include "BKE_mesh.h"
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
#include "BKE_object.h"
#include "BKE_scene.h"
#include "RE_pipeline.h"
#ifdef __cplusplus
}
#endif
BlenderStrokeRenderer::BlenderStrokeRenderer(Render* re, int render_count) : StrokeRenderer()
{
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
// TEMPORARY - need a texture manager
_textureManager = new BlenderTextureManager;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
_textureManager->load();
// for stroke mesh generation
_width = re->winx;
_height = re->winy;
//Scene.New("FreestyleStrokes")
old_scene = re->scene;
char name[22];
BLI_snprintf(name, sizeof(name), "FRS%d_%s", render_count, re->scene->id.name + 2);
freestyle_scene = BKE_scene_add(G.main, name);
freestyle_scene->r.cfra = old_scene->r.cfra;
freestyle_scene->r.mode = old_scene->r.mode &
~(R_EDGE_FRS | R_SHADOW | R_SSS | R_PANORAMA | R_ENVMAP | R_MBLUR | R_BORDER);
freestyle_scene->r.xsch = re->rectx; // old_scene->r.xsch
freestyle_scene->r.ysch = re->recty; // old_scene->r.ysch
freestyle_scene->r.xasp = 1.0f; // old_scene->r.xasp;
freestyle_scene->r.yasp = 1.0f; // old_scene->r.yasp;
freestyle_scene->r.tilex = old_scene->r.tilex;
freestyle_scene->r.tiley = old_scene->r.tiley;
freestyle_scene->r.size = 100; // old_scene->r.size
freestyle_scene->r.maximsize = old_scene->r.maximsize;
freestyle_scene->r.ocres = old_scene->r.ocres;
freestyle_scene->r.color_mgt_flag = 0; // old_scene->r.color_mgt_flag;
freestyle_scene->r.scemode = old_scene->r.scemode & ~(R_SINGLE_LAYER);
freestyle_scene->r.flag = old_scene->r.flag;
freestyle_scene->r.threads = old_scene->r.threads;
freestyle_scene->r.border.xmin = old_scene->r.border.xmin;
freestyle_scene->r.border.ymin = old_scene->r.border.ymin;
freestyle_scene->r.border.xmax = old_scene->r.border.xmax;
freestyle_scene->r.border.ymax = old_scene->r.border.ymax;
strcpy(freestyle_scene->r.pic, old_scene->r.pic);
freestyle_scene->r.safety.xmin = old_scene->r.safety.xmin;
freestyle_scene->r.safety.ymin = old_scene->r.safety.ymin;
freestyle_scene->r.safety.xmax = old_scene->r.safety.xmax;
freestyle_scene->r.safety.ymax = old_scene->r.safety.ymax;
freestyle_scene->r.osa = old_scene->r.osa;
freestyle_scene->r.filtertype = old_scene->r.filtertype;
freestyle_scene->r.gauss = old_scene->r.gauss;
freestyle_scene->r.dither_intensity = old_scene->r.dither_intensity;
BLI_strncpy(freestyle_scene->r.engine, old_scene->r.engine, sizeof(freestyle_scene->r.engine));
freestyle_scene->r.im_format.planes = R_IMF_PLANES_RGBA;
freestyle_scene->r.im_format.imtype = R_IMF_IMTYPE_PNG;
BKE_scene_disable_color_management(freestyle_scene);
BKE_scene_set_background(G.main, freestyle_scene);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
// Camera
Object* object_camera = BKE_object_add(freestyle_scene, OB_CAMERA);
Camera* camera = (Camera *)object_camera->data;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
camera->type = CAM_ORTHO;
camera->ortho_scale = max(re->rectx, re->recty);
camera->clipsta = 0.1f;
camera->clipend = 100.0f;
_z_delta = 0.00001f;
_z = camera->clipsta + _z_delta;
// test
//_z = 999.90f; _z_delta = 0.01f;
object_camera->loc[0] = re->disprect.xmin + 0.5f * re->rectx;
object_camera->loc[1] = re->disprect.ymin + 0.5f * re->recty;
object_camera->loc[2] = 1.0f;
freestyle_scene->camera = object_camera;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
// Material
material = BKE_material_add("stroke_material");
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
material->mode |= MA_VERTEXCOLP;
material->mode |= MA_TRANSP;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
material->mode |= MA_SHLESS;
material->vcol_alpha = 1;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
BlenderStrokeRenderer::~BlenderStrokeRenderer()
{
if (0 != _textureManager) {
delete _textureManager;
_textureManager = NULL;
}
2010-06-26 16:35:56 +00:00
// The freestyle_scene object is not released here. Instead,
// the scene is released in free_all_freestyle_renders() in
// source/blender/render/intern/source/pipeline.c, after the
// compositor has finished.
// release objects and data blocks
for (Base *b = (Base*)freestyle_scene->base.first; b; b = b->next) {
Object *ob = b->object;
void *data = ob->data;
char name[24];
strcpy(name, ob->id.name);
//cout << "removing " << name[0] << name[1] << ":" << (name+2) << endl;
switch (ob->type) {
case OB_MESH:
BKE_libblock_free(&G.main->object, ob);
BKE_libblock_free(&G.main->mesh, data);
break;
case OB_CAMERA:
BKE_libblock_free(&G.main->object, ob);
BKE_libblock_free(&G.main->camera, data);
freestyle_scene->camera = NULL;
break;
default:
cerr << "Warning: unexpected object in the scene: " << name[0] << name[1] << ":" << (name+2) << endl;
}
}
BLI_freelistN(&freestyle_scene->base);
// release material
BKE_libblock_free(&G.main->mat, material);
BKE_scene_set_background(G.main, old_scene);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
float BlenderStrokeRenderer::get_stroke_vertex_z(void) const
{
float z = _z;
BlenderStrokeRenderer *self = const_cast<BlenderStrokeRenderer *>(this);
if (!(_z < _z_delta * 100000.0f))
self->_z_delta *= 10.0f;
self->_z += _z_delta;
return -z;
}
void BlenderStrokeRenderer::RenderStrokeRep(StrokeRep *iStrokeRep) const
{
RenderStrokeRepBasic(iStrokeRep);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
void BlenderStrokeRenderer::RenderStrokeRepBasic(StrokeRep *iStrokeRep) const
{
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
////////////////////
// Build up scene
////////////////////
vector<Strip*>& strips = iStrokeRep->getStrips();
Strip::vertex_container::iterator v[3];
StrokeVertexRep *svRep[3];
Vec3r color[3];
unsigned int vertex_index, edge_index, loop_index;
Vec2r p;
for (vector<Strip*>::iterator s = strips.begin(), send = strips.end();
s != send;
++s){
Strip::vertex_container& strip_vertices = (*s)->vertices();
int strip_vertex_count = (*s)->sizeStrip();
int xl, xu, yl, yu, n, visible_faces, visible_segments;
bool visible;
// iterate over all vertices and count visible faces and strip segments
// (note: a strip segment is a series of visible faces, while two strip
// segments are separated by one or more invisible faces)
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
visible_faces = visible_segments = 0;
visible = false;
for (n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
xl = xu = yl = yu = 0;
for (int j = 0; j < 3; j++) {
p = svRep[j]->point2d();
if (p[0] < 0.0)
xl++;
else if (p[0] > _width)
xu++;
if (p[1] < 0.0)
yl++;
else if (p[1] > _height)
yu++;
}
if (xl == 3 || xu == 3 || yl == 3 || yu == 3) {
visible = false;
}
else {
visible_faces++;
if (!visible)
visible_segments++;
visible = true;
}
}
if (visible_faces == 0)
continue;
//me = Mesh.New()
#if 0
Object* object_mesh = BKE_object_add(freestyle_scene, OB_MESH);
#else
Object* object_mesh = NewMesh();
#endif
Mesh* mesh = (Mesh*)object_mesh->data;
#if 0
MEM_freeN(mesh->bb);
mesh->bb = NULL;
mesh->id.us = 0;
#endif
#if 1
//me.materials = [mat]
mesh->mat = (Material**)MEM_mallocN(1 * sizeof(Material*), "MaterialList");
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
mesh->mat[0] = material;
mesh->totcol = 1;
test_object_materials((ID*)mesh);
#else
assign_material(object_mesh, material, object_mesh->totcol + 1);
object_mesh->actcol = object_mesh->totcol;
#endif
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
// vertices allocation
mesh->totvert = visible_faces + visible_segments * 2;
mesh->mvert = (MVert*)CustomData_add_layer(&mesh->vdata, CD_MVERT, CD_CALLOC, NULL, mesh->totvert);
// edges allocation
mesh->totedge = visible_faces * 2 + visible_segments;
mesh->medge = (MEdge*)CustomData_add_layer(&mesh->edata, CD_MEDGE, CD_CALLOC, NULL, mesh->totedge);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
// faces allocation
mesh->totpoly = visible_faces;
mesh->mpoly = (MPoly*)CustomData_add_layer(&mesh->pdata, CD_MPOLY, CD_CALLOC, NULL, mesh->totpoly);
// loops allocation
mesh->totloop = visible_faces * 3;
mesh->mloop = (MLoop*)CustomData_add_layer(&mesh->ldata, CD_MLOOP, CD_CALLOC, NULL, mesh->totloop);
// colors allocation
mesh->mloopcol = (MLoopCol*)CustomData_add_layer(&mesh->ldata, CD_MLOOPCOL, CD_CALLOC, NULL, mesh->totloop);
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
////////////////////
// Data copy
////////////////////
MVert *vertices = mesh->mvert;
MEdge *edges = mesh->medge;
MPoly *polys = mesh->mpoly;
MLoop *loops = mesh->mloop;
MLoopCol *colors = mesh->mloopcol;
v[0] = strip_vertices.begin();
v[1] = v[0] + 1;
v[2] = v[0] + 2;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
vertex_index = edge_index = loop_index = 0;
visible = false;
// Note: Mesh generation in the following loop assumes stroke strips
// to be triangle strips.
for (n = 2; n < strip_vertex_count; n++, v[0]++, v[1]++, v[2]++) {
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
svRep[0] = *(v[0]);
svRep[1] = *(v[1]);
svRep[2] = *(v[2]);
xl = xu = yl = yu = 0;
for (int j = 0; j < 3; j++) {
p = svRep[j]->point2d();
if (p[0] < 0.0)
xl++;
else if (p[0] > _width)
xu++;
if (p[1] < 0.0)
yl++;
else if (p[1] > _height)
yu++;
}
if (xl == 3 || xu == 3 || yl == 3 || yu == 3) {
visible = false;
}
else {
if (!visible) {
// first vertex
vertices->co[0] = svRep[0]->point2d()[0];
vertices->co[1] = svRep[0]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
++vertices;
++vertex_index;
// second vertex
vertices->co[0] = svRep[1]->point2d()[0];
vertices->co[1] = svRep[1]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
++vertices;
++vertex_index;
// first edge
edges->v1 = vertex_index - 2;
edges->v2 = vertex_index - 1;
++edges;
++edge_index;
}
visible = true;
// vertex
vertices->co[0] = svRep[2]->point2d()[0];
vertices->co[1] = svRep[2]->point2d()[1];
vertices->co[2] = get_stroke_vertex_z();
++vertices;
++vertex_index;
// edges
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 3;
++edges;
++edge_index;
edges->v1 = vertex_index - 1;
edges->v2 = vertex_index - 2;
++edges;
++edge_index;
// poly
polys->loopstart = loop_index;
polys->totloop = 3;
++polys;
// loops
if (n % 2 == 0) {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 1;
loops[1].v = vertex_index - 2;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 3;
loops[2].e = edge_index - 2;
}
else {
loops[0].v = vertex_index - 1;
loops[0].e = edge_index - 2;
loops[1].v = vertex_index - 3;
loops[1].e = edge_index - 3;
loops[2].v = vertex_index - 2;
loops[2].e = edge_index - 1;
}
loops += 3;
loop_index += 3;
// colors
if (n % 2 == 0) {
colors[0].r = (short)(255.0f * svRep[2]->color()[0]);
colors[0].g = (short)(255.0f * svRep[2]->color()[1]);
colors[0].b = (short)(255.0f * svRep[2]->color()[2]);
colors[0].a = (short)(255.0f * svRep[2]->alpha());
colors[1].r = (short)(255.0f * svRep[1]->color()[0]);
colors[1].g = (short)(255.0f * svRep[1]->color()[1]);
colors[1].b = (short)(255.0f * svRep[1]->color()[2]);
colors[1].a = (short)(255.0f * svRep[1]->alpha());
colors[2].r = (short)(255.0f * svRep[0]->color()[0]);
colors[2].g = (short)(255.0f * svRep[0]->color()[1]);
colors[2].b = (short)(255.0f * svRep[0]->color()[2]);
colors[2].a = (short)(255.0f * svRep[0]->alpha());
}
else {
colors[0].r = (short)(255.0f * svRep[2]->color()[0]);
colors[0].g = (short)(255.0f * svRep[2]->color()[1]);
colors[0].b = (short)(255.0f * svRep[2]->color()[2]);
colors[0].a = (short)(255.0f * svRep[2]->alpha());
colors[1].r = (short)(255.0f * svRep[0]->color()[0]);
colors[1].g = (short)(255.0f * svRep[0]->color()[1]);
colors[1].b = (short)(255.0f * svRep[0]->color()[2]);
colors[1].a = (short)(255.0f * svRep[0]->alpha());
colors[2].r = (short)(255.0f * svRep[1]->color()[0]);
colors[2].g = (short)(255.0f * svRep[1]->color()[1]);
colors[2].b = (short)(255.0f * svRep[1]->color()[2]);
colors[2].a = (short)(255.0f * svRep[1]->alpha());
}
colors += 3;
}
} // loop over strip vertices
#if 0
BKE_mesh_validate(mesh, TRUE);
#endif
} // loop over strips
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}
// A replacement of BKE_object_add() for better performance.
Object *BlenderStrokeRenderer::NewMesh() const
{
Object *ob;
Base *base;
char name[MAX_ID_NAME];
static unsigned int mesh_id = 0xffffffff;
BLI_snprintf(name, MAX_ID_NAME, "0%08xOB", mesh_id);
ob = BKE_object_add_only_object(OB_MESH, name);
BLI_snprintf(name, MAX_ID_NAME, "0%08xME", mesh_id);
ob->data = BKE_mesh_add(name);
ob->lay = 1;
base = BKE_scene_base_add(freestyle_scene, ob);
#if 0
BKE_scene_base_deselect_all(scene);
BKE_scene_base_select(scene, base);
#endif
ob->recalc |= OB_RECALC_OB | OB_RECALC_DATA | OB_RECALC_TIME;
--mesh_id;
return ob;
}
Render* BlenderStrokeRenderer::RenderScene(Render *re)
{
Camera *camera = (Camera*)freestyle_scene->camera->data;
if (camera->clipend < _z)
camera->clipend = _z + _z_delta * 100.0f;
//cout << "clipsta " << camera->clipsta << ", clipend " << camera->clipend << endl;
Render *freestyle_render = RE_NewRender(freestyle_scene->id.name);
RE_RenderFreestyleStrokes(freestyle_render, G.main, freestyle_scene);
return freestyle_render;
The GL-based renderer was removed. Freestyle now uses Blender's internal renderer to raster strokes. The render generated from Freestyle's data is currently stored in the original scene's render structure ( as 'freestyle_render'): when the render database is generated, the scene's geometrical data is first imported into Freestyle and strokes are calculated. The generated strokes are used to create a Blender scene, rendered independently. The render result is used in the rendering loop. The final rendering is performed the same way edge rendering is, in a function ('freestyle_enhance_add') operating on each individual render part. Freestyle strokes are only included if the toggle button "Freestyle" (in the 'Output' panel) is active and if the "Freestyle" render layer is also selected. Freestyle's panel appears when the toggle button 'Freestyle' is active. IMPORTANT: as of now, rendering ONLY works when OSA is disabled and when Xparts = Yparts = 1. If these settings are not set, a bogus image will be created. To make the render happen, many modifications had to be made: - the Canvas::Draw and Operators::create methods no longer render strokes. They only generate shading and locational information. - a BlenderStrokeRenderer class was added to turn Freestyle's strokes into a Blender scene. Basically, the scene consists of strokes in their projected image 2D coordinates and an orthographic camera centered in the middle of the corresponding canvas. The scene is rendered using vertex colors, in shadeless mode (therefore, no lamp is needed). BlenderStrokeRenderer uses the old GLTextureManager to load textures (as required by the StrokeRenderer class), even though stroke textures are probably not supported (not tested). After the scene is rendered, it is safely and automatically discarded. - AppCanvas' code was greatly reduced to the bare minimum. The former AppCanvas would use an OpenGL-based back buffer and z buffer to determine the scene's color and depth information. In the future, this data will be determined from the corresponding render passes. Currently, the integration is not achieved so all style modules using depth/color information are sure to fail. - before, Freestyle needed an OpenGL context to determine the camera's information and to compute the view map. As of now, the modelview and projection matrices are fully determined using data provided by Blender. This means both perspective and orthographic projections are supported. The AppGLWidget will very soon be removed completely.
2008-12-01 21:30:44 +00:00
}