This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mesh_evaluate.c

2136 lines
66 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mesh_evaluate.c
* \ingroup bke
*
* Functions to evaluate mesh data.
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_memarena.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_bitmap.h"
#include "BLI_polyfill2d.h"
#include "BLI_linklist.h"
#include "BLI_linklist_stack.h"
#include "BLI_alloca.h"
#include "BKE_customdata.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "BKE_report.h"
#include "BLI_strict_flags.h"
#include "mikktspace.h"
// #define DEBUG_TIME
#ifdef DEBUG_TIME
# include "PIL_time.h"
# include "PIL_time_utildefines.h"
#endif
/* -------------------------------------------------------------------- */
/** \name Mesh Normal Calculation
* \{ */
/**
* Call when there are no polygons.
*/
static void mesh_calc_normals_vert_fallback(MVert *mverts, int numVerts)
{
int i;
for (i = 0; i < numVerts; i++) {
MVert *mv = &mverts[i];
float no[3];
normalize_v3_v3(no, mv->co);
normal_float_to_short_v3(mv->no, no);
}
}
/* Calculate vertex and face normals, face normals are returned in *r_faceNors if non-NULL
* and vertex normals are stored in actual mverts.
*/
void BKE_mesh_calc_normals_mapping(MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*r_polyNors)[3],
MFace *mfaces, int numFaces, const int *origIndexFace, float (*r_faceNors)[3])
{
BKE_mesh_calc_normals_mapping_ex(mverts, numVerts, mloop, mpolys,
numLoops, numPolys, r_polyNors, mfaces, numFaces,
2014-03-20 22:56:28 +11:00
origIndexFace, r_faceNors, false);
}
/* extended version of 'BKE_mesh_calc_normals_poly' with option not to calc vertex normals */
void BKE_mesh_calc_normals_mapping_ex(
MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys,
int numLoops, int numPolys, float (*r_polyNors)[3],
MFace *mfaces, int numFaces, const int *origIndexFace, float (*r_faceNors)[3],
const bool only_face_normals)
{
float (*pnors)[3] = r_polyNors, (*fnors)[3] = r_faceNors;
int i;
MFace *mf;
MPoly *mp;
if (numPolys == 0) {
2014-03-20 22:56:28 +11:00
if (only_face_normals == false) {
mesh_calc_normals_vert_fallback(mverts, numVerts);
}
return;
}
/* if we are not calculating verts and no verts were passes then we have nothing to do */
2014-03-20 22:56:28 +11:00
if ((only_face_normals == true) && (r_polyNors == NULL) && (r_faceNors == NULL)) {
printf("%s: called with nothing to do\n", __func__);
return;
}
if (!pnors) pnors = MEM_callocN(sizeof(float[3]) * (size_t)numPolys, __func__);
/* if (!fnors) fnors = MEM_callocN(sizeof(float[3]) * numFaces, "face nors mesh.c"); */ /* NO NEED TO ALLOC YET */
2014-03-20 22:56:28 +11:00
if (only_face_normals == false) {
/* vertex normals are optional, they require some extra calculations,
* so make them optional */
BKE_mesh_calc_normals_poly(mverts, numVerts, mloop, mpolys, numLoops, numPolys, pnors, false);
}
else {
/* only calc poly normals */
mp = mpolys;
for (i = 0; i < numPolys; i++, mp++) {
BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]);
}
}
if (origIndexFace &&
/* fnors == r_faceNors */ /* NO NEED TO ALLOC YET */
fnors != NULL &&
numFaces)
{
mf = mfaces;
for (i = 0; i < numFaces; i++, mf++, origIndexFace++) {
if (*origIndexFace < numPolys) {
copy_v3_v3(fnors[i], pnors[*origIndexFace]);
}
else {
/* eek, we're not corresponding to polys */
printf("error in %s: tessellation face indices are incorrect. normals may look bad.\n", __func__);
}
}
}
if (pnors != r_polyNors) MEM_freeN(pnors);
/* if (fnors != r_faceNors) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */
fnors = pnors = NULL;
}
static void mesh_calc_normals_poly_accum(MPoly *mp, MLoop *ml,
MVert *mvert, float polyno[3], float (*tnorms)[3])
{
const int nverts = mp->totloop;
float (*edgevecbuf)[3] = BLI_array_alloca(edgevecbuf, (size_t)nverts);
int i;
/* Polygon Normal and edge-vector */
/* inline version of #BKE_mesh_calc_poly_normal, also does edge-vectors */
{
int i_prev = nverts - 1;
2014-04-27 22:02:25 +10:00
const float *v_prev = mvert[ml[i_prev].v].co;
const float *v_curr;
zero_v3(polyno);
/* Newell's Method */
for (i = 0; i < nverts; i++) {
v_curr = mvert[ml[i].v].co;
add_newell_cross_v3_v3v3(polyno, v_prev, v_curr);
/* Unrelated to normalize, calculate edge-vector */
sub_v3_v3v3(edgevecbuf[i_prev], v_prev, v_curr);
normalize_v3(edgevecbuf[i_prev]);
i_prev = i;
v_prev = v_curr;
}
if (UNLIKELY(normalize_v3(polyno) == 0.0f)) {
polyno[2] = 1.0f; /* other axis set to 0.0 */
}
}
/* accumulate angle weighted face normal */
/* inline version of #accumulate_vertex_normals_poly */
{
const float *prev_edge = edgevecbuf[nverts - 1];
for (i = 0; i < nverts; i++) {
const float *cur_edge = edgevecbuf[i];
/* calculate angle between the two poly edges incident on
* this vertex */
const float fac = saacos(-dot_v3v3(cur_edge, prev_edge));
/* accumulate */
madd_v3_v3fl(tnorms[ml[i].v], polyno, fac);
prev_edge = cur_edge;
}
}
}
void BKE_mesh_calc_normals_poly(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys,
int UNUSED(numLoops), int numPolys, float (*r_polynors)[3],
const bool only_face_normals)
{
float (*pnors)[3] = r_polynors;
float (*tnorms)[3];
int i;
MPoly *mp;
if (only_face_normals) {
BLI_assert(pnors != NULL);
#pragma omp parallel for if (numPolys > BKE_MESH_OMP_LIMIT)
for (i = 0; i < numPolys; i++) {
BKE_mesh_calc_poly_normal(&mpolys[i], mloop + mpolys[i].loopstart, mverts, pnors[i]);
}
return;
}
/* first go through and calculate normals for all the polys */
tnorms = MEM_callocN(sizeof(*tnorms) * (size_t)numVerts, __func__);
if (pnors) {
mp = mpolys;
for (i = 0; i < numPolys; i++, mp++) {
mesh_calc_normals_poly_accum(mp, mloop + mp->loopstart, mverts, pnors[i], tnorms);
}
}
else {
float tpnor[3]; /* temp poly normal */
mp = mpolys;
for (i = 0; i < numPolys; i++, mp++) {
mesh_calc_normals_poly_accum(mp, mloop + mp->loopstart, mverts, tpnor, tnorms);
}
}
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for (i = 0; i < numVerts; i++) {
MVert *mv = &mverts[i];
float *no = tnorms[i];
if (UNLIKELY(normalize_v3(no) == 0.0f)) {
normalize_v3_v3(no, mv->co);
}
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
}
void BKE_mesh_calc_normals(Mesh *mesh)
{
#ifdef DEBUG_TIME
TIMEIT_START(BKE_mesh_calc_normals);
#endif
BKE_mesh_calc_normals_poly(mesh->mvert, mesh->totvert,
mesh->mloop, mesh->mpoly, mesh->totloop, mesh->totpoly,
NULL, false);
#ifdef DEBUG_TIME
TIMEIT_END(BKE_mesh_calc_normals);
#endif
}
void BKE_mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float (*r_faceNors)[3])
{
float (*tnorms)[3] = MEM_callocN(sizeof(*tnorms) * (size_t)numVerts, "tnorms");
float (*fnors)[3] = (r_faceNors) ? r_faceNors : MEM_callocN(sizeof(*fnors) * (size_t)numFaces, "meshnormals");
int i;
for (i = 0; i < numFaces; i++) {
MFace *mf = &mfaces[i];
float *f_no = fnors[i];
float *n4 = (mf->v4) ? tnorms[mf->v4] : NULL;
const float *c4 = (mf->v4) ? mverts[mf->v4].co : NULL;
if (mf->v4)
normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co);
else
normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co);
accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4,
f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4);
}
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for (i = 0; i < numVerts; i++) {
MVert *mv = &mverts[i];
float *no = tnorms[i];
if (UNLIKELY(normalize_v3(no) == 0.0f)) {
normalize_v3_v3(no, mv->co);
}
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
if (fnors != r_faceNors)
MEM_freeN(fnors);
}
/**
* Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
* Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry (splitting edges).
*/
void BKE_mesh_normals_loop_split(MVert *mverts, const int UNUSED(numVerts), MEdge *medges, const int numEdges,
MLoop *mloops, float (*r_loopnors)[3], const int numLoops,
MPoly *mpolys, float (*polynors)[3], const int numPolys, float split_angle)
{
#define INDEX_UNSET INT_MIN
#define INDEX_INVALID -1
/* See comment about edge_to_loops below. */
#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID))
/* Mapping edge -> loops.
* If that edge is used by more than two loops (polys), it is always sharp (and tagged as such, see below).
* We also use the second loop index as a kind of flag: smooth edge: > 0,
* sharp edge: < 0 (INDEX_INVALID || INDEX_UNSET),
* unset: INDEX_UNSET
* Note that currently we only have two values for second loop of sharp edges. However, if needed, we can
* store the negated value of loop index instead of INDEX_INVALID to retrieve the real value later in code).
* Note also that lose edges always have both values set to 0!
*/
int (*edge_to_loops)[2] = MEM_callocN(sizeof(int[2]) * (size_t)numEdges, __func__);
/* Simple mapping from a loop to its polygon index. */
int *loop_to_poly = MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);
MPoly *mp;
int mp_index;
const bool check_angle = (split_angle < (float)M_PI);
/* Temp normal stack. */
BLI_SMALLSTACK_DECLARE(normal, float *);
#ifdef DEBUG_TIME
TIMEIT_START(BKE_mesh_normals_loop_split);
#endif
if (check_angle) {
split_angle = cosf(split_angle);
}
/* This first loop check which edges are actually smooth, and compute edge vectors. */
for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
MLoop *ml_curr;
int *e2l;
int ml_curr_index = mp->loopstart;
const int ml_last_index = (ml_curr_index + mp->totloop) - 1;
ml_curr = &mloops[ml_curr_index];
for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++) {
e2l = edge_to_loops[ml_curr->e];
loop_to_poly[ml_curr_index] = mp_index;
/* Pre-populate all loop normals as if their verts were all-smooth, this way we don't have to compute
* those later!
*/
normal_short_to_float_v3(r_loopnors[ml_curr_index], mverts[ml_curr->v].no);
/* Check whether current edge might be smooth or sharp */
if ((e2l[0] | e2l[1]) == 0) {
/* 'Empty' edge until now, set e2l[0] (and e2l[1] to INDEX_UNSET to tag it as unset). */
e2l[0] = ml_curr_index;
/* We have to check this here too, else we might miss some flat faces!!! */
e2l[1] = (mp->flag & ME_SMOOTH) ? INDEX_UNSET : INDEX_INVALID;
}
else if (e2l[1] == INDEX_UNSET) {
/* Second loop using this edge, time to test its sharpness.
* An edge is sharp if it is tagged as such, or its face is not smooth,
* or both poly have opposed (flipped) normals, i.e. both loops on the same edge share the same vertex,
* or angle between both its polys' normals is above split_angle value.
*/
if (!(mp->flag & ME_SMOOTH) || (medges[ml_curr->e].flag & ME_SHARP) ||
ml_curr->v == mloops[e2l[0]].v ||
(check_angle && dot_v3v3(polynors[loop_to_poly[e2l[0]]], polynors[mp_index]) < split_angle))
{
/* Note: we are sure that loop != 0 here ;) */
e2l[1] = INDEX_INVALID;
}
else {
e2l[1] = ml_curr_index;
}
}
else if (!IS_EDGE_SHARP(e2l)) {
/* More than two loops using this edge, tag as sharp if not yet done. */
e2l[1] = INDEX_INVALID;
}
/* Else, edge is already 'disqualified' (i.e. sharp)! */
}
}
/* We now know edges that can be smoothed (with their vector, and their two loops), and edges that will be hard!
* Now, time to generate the normals.
*/
for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
MLoop *ml_curr, *ml_prev;
float (*lnors)[3];
const int ml_last_index = (mp->loopstart + mp->totloop) - 1;
int ml_curr_index = mp->loopstart;
int ml_prev_index = ml_last_index;
ml_curr = &mloops[ml_curr_index];
ml_prev = &mloops[ml_prev_index];
lnors = &r_loopnors[ml_curr_index];
for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) {
const int *e2l_curr = edge_to_loops[ml_curr->e];
const int *e2l_prev = edge_to_loops[ml_prev->e];
if (!IS_EDGE_SHARP(e2l_curr)) {
/* A smooth edge.
* We skip it because it is either:
* - in the middle of a 'smooth fan' already computed (or that will be as soon as we hit
* one of its ends, i.e. one of its two sharp edges), or...
* - the related vertex is a "full smooth" one, in which case pre-populated normals from vertex
* are just fine!
*/
}
else if (IS_EDGE_SHARP(e2l_prev)) {
/* Simple case (both edges around that vertex are sharp in current polygon),
* this vertex just takes its poly normal.
*/
copy_v3_v3(*lnors, polynors[mp_index]);
/* No need to mark loop as done here, we won't run into it again anyway! */
}
/* We *do not need* to check/tag loops as already computed!
* Due to the fact a loop only links to one of its two edges, a same fan *will never be walked more than
* once!*
* Since we consider edges having neighbor polys with inverted (flipped) normals as sharp, we are sure that
* no fan will be skipped, even only considering the case (sharp curr_edge, smooth prev_edge), and not the
* alternative (smooth curr_edge, sharp prev_edge).
* All this due/thanks to link between normals and loop ordering.
*/
else {
/* Gah... We have to fan around current vertex, until we find the other non-smooth edge,
* and accumulate face normals into the vertex!
* Note in case this vertex has only one sharp edges, this is a waste because the normal is the same as
* the vertex normal, but I do not see any easy way to detect that (would need to count number
* of sharp edges per vertex, I doubt the additional memory usage would be worth it, especially as
* it should not be a common case in real-life meshes anyway).
*/
const unsigned int mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */
const MVert *mv_pivot = &mverts[mv_pivot_index];
const int *e2lfan_curr;
float vec_curr[3], vec_prev[3];
MLoop *mlfan_curr, *mlfan_next;
MPoly *mpfan_next;
float lnor[3] = {0.0f, 0.0f, 0.0f};
/* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */
int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index;
e2lfan_curr = e2l_prev;
mlfan_curr = ml_prev;
mlfan_curr_index = ml_prev_index;
mlfan_vert_index = ml_curr_index;
mpfan_curr_index = mp_index;
BLI_assert(mlfan_curr_index >= 0);
BLI_assert(mlfan_vert_index >= 0);
BLI_assert(mpfan_curr_index >= 0);
/* Only need to compute previous edge's vector once, then we can just reuse old current one! */
{
const MEdge *me_prev = &medges[ml_curr->e]; /* ml_curr would be mlfan_prev if we needed that one */
const MVert *mv_2 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : &mverts[me_prev->v1];
sub_v3_v3v3(vec_prev, mv_2->co, mv_pivot->co);
normalize_v3(vec_prev);
}
while (true) {
/* Compute edge vectors.
* NOTE: We could pre-compute those into an array, in the first iteration, instead of computing them
* twice (or more) here. However, time gained is not worth memory and time lost,
* given the fact that this code should not be called that much in real-life meshes...
*/
{
const MEdge *me_curr = &medges[mlfan_curr->e];
const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] :
&mverts[me_curr->v1];
sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
normalize_v3(vec_curr);
}
{
/* Code similar to accumulate_vertex_normals_poly. */
/* Calculate angle between the two poly edges incident on this vertex. */
const float fac = saacos(dot_v3v3(vec_curr, vec_prev));
/* Accumulate */
madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac);
}
/* We store here a pointer to all loop-normals processed. */
BLI_SMALLSTACK_PUSH(normal, &(r_loopnors[mlfan_vert_index][0]));
if (IS_EDGE_SHARP(e2lfan_curr)) {
/* Current edge is sharp, we have finished with this fan of faces around this vert! */
break;
}
copy_v3_v3(vec_prev, vec_curr);
/* Warning! This is rather complex!
* We have to find our next edge around the vertex (fan mode).
* First we find the next loop, which is either previous or next to mlfan_curr_index, depending
* whether both loops using current edge are in the same direction or not, and whether
* mlfan_curr_index actually uses the vertex we are fanning around!
* mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one
* (i.e. not the future mlfan_curr)...
*/
mlfan_curr_index = (e2lfan_curr[0] == mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0];
mpfan_curr_index = loop_to_poly[mlfan_curr_index];
BLI_assert(mlfan_curr_index >= 0);
BLI_assert(mpfan_curr_index >= 0);
mlfan_next = &mloops[mlfan_curr_index];
mpfan_next = &mpolys[mpfan_curr_index];
if ((mlfan_curr->v == mlfan_next->v && mlfan_curr->v == mv_pivot_index) ||
(mlfan_curr->v != mlfan_next->v && mlfan_curr->v != mv_pivot_index))
{
/* We need the previous loop, but current one is our vertex's loop. */
mlfan_vert_index = mlfan_curr_index;
if (--mlfan_curr_index < mpfan_next->loopstart) {
mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1;
}
}
else {
/* We need the next loop, which is also our vertex's loop. */
if (++mlfan_curr_index >= mpfan_next->loopstart + mpfan_next->totloop) {
mlfan_curr_index = mpfan_next->loopstart;
}
mlfan_vert_index = mlfan_curr_index;
}
mlfan_curr = &mloops[mlfan_curr_index];
/* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */
e2lfan_curr = edge_to_loops[mlfan_curr->e];
}
/* In case we get a zero normal here, just use vertex normal already set! */
if (LIKELY(normalize_v3(lnor) != 0.0f)) {
/* Copy back the final computed normal into all related loop-normals. */
float *nor;
while ((nor = BLI_SMALLSTACK_POP(normal))) {
copy_v3_v3(nor, lnor);
}
}
}
ml_prev = ml_curr;
ml_prev_index = ml_curr_index;
}
}
BLI_SMALLSTACK_FREE(normal);
MEM_freeN(edge_to_loops);
MEM_freeN(loop_to_poly);
#ifdef DEBUG_TIME
TIMEIT_END(BKE_mesh_normals_loop_split);
#endif
#undef INDEX_UNSET
#undef INDEX_INVALID
#undef IS_EDGE_SHARP
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Tangent Calculations
* \{ */
/* Tangent space utils. */
/* User data. */
typedef struct {
MPoly *mpolys; /* faces */
MLoop *mloops; /* faces's vertices */
MVert *mverts; /* vertices */
MLoopUV *luvs; /* texture coordinates */
float (*lnors)[3]; /* loops' normals */
float (*tangents)[4]; /* output tangents */
int num_polys; /* number of polygons */
} BKEMeshToTangent;
/* Mikktspace's API */
static int get_num_faces(const SMikkTSpaceContext *pContext)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
return p_mesh->num_polys;
}
static int get_num_verts_of_face(const SMikkTSpaceContext *pContext, const int face_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
return p_mesh->mpolys[face_idx].totloop;
}
static void get_position(const SMikkTSpaceContext *pContext, float r_co[3], const int face_idx, const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
const int loop_idx = p_mesh->mpolys[face_idx].loopstart + vert_idx;
copy_v3_v3(r_co, p_mesh->mverts[p_mesh->mloops[loop_idx].v].co);
}
static void get_texture_coordinate(const SMikkTSpaceContext *pContext, float r_uv[2], const int face_idx,
const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
copy_v2_v2(r_uv, p_mesh->luvs[p_mesh->mpolys[face_idx].loopstart + vert_idx].uv);
}
static void get_normal(const SMikkTSpaceContext *pContext, float r_no[3], const int face_idx, const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
copy_v3_v3(r_no, p_mesh->lnors[p_mesh->mpolys[face_idx].loopstart + vert_idx]);
}
static void set_tspace(const SMikkTSpaceContext *pContext, const float fv_tangent[3], const float face_sign,
const int face_idx, const int vert_idx)
{
BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
float *p_res = p_mesh->tangents[p_mesh->mpolys[face_idx].loopstart + vert_idx];
copy_v3_v3(p_res, fv_tangent);
p_res[3] = face_sign;
}
/**
* Compute simplified tangent space normals, i.e. tangent vector + sign of bi-tangent one, which combined with
* split normals can be used to recreate the full tangent space.
* Note: * The mesh should be made of only tris and quads!
*/
void BKE_mesh_loop_tangents_ex(MVert *mverts, const int UNUSED(numVerts), MLoop *mloops,
float (*r_looptangent)[4], float (*loopnors)[3], MLoopUV *loopuvs,
const int UNUSED(numLoops), MPoly *mpolys, const int numPolys, ReportList *reports)
{
BKEMeshToTangent mesh_to_tangent = {NULL};
SMikkTSpaceContext s_context = {NULL};
SMikkTSpaceInterface s_interface = {NULL};
MPoly *mp;
int mp_index;
/* First check we do have a tris/quads only mesh. */
for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
if (mp->totloop > 4) {
2014-01-15 10:40:28 +01:00
BKE_report(reports, RPT_ERROR, "Tangent space can only be computed for tris/quads, aborting");
return;
}
}
/* Compute Mikktspace's tangent normals. */
mesh_to_tangent.mpolys = mpolys;
mesh_to_tangent.mloops = mloops;
mesh_to_tangent.mverts = mverts;
mesh_to_tangent.luvs = loopuvs;
mesh_to_tangent.lnors = loopnors;
mesh_to_tangent.tangents = r_looptangent;
mesh_to_tangent.num_polys = numPolys;
s_context.m_pUserData = &mesh_to_tangent;
s_context.m_pInterface = &s_interface;
s_interface.m_getNumFaces = get_num_faces;
s_interface.m_getNumVerticesOfFace = get_num_verts_of_face;
s_interface.m_getPosition = get_position;
s_interface.m_getTexCoord = get_texture_coordinate;
s_interface.m_getNormal = get_normal;
s_interface.m_setTSpaceBasic = set_tspace;
/* 0 if failed */
if (genTangSpaceDefault(&s_context) == false) {
2014-01-15 10:40:28 +01:00
BKE_report(reports, RPT_ERROR, "Mikktspace failed to generate tangents for this mesh!");
}
}
/**
* Wrapper around BKE_mesh_loop_tangents_ex, which takes care of most boiling code.
* Note: * There must be a valid loop's CD_NORMALS available.
* * The mesh should be made of only tris and quads!
*/
void BKE_mesh_loop_tangents(Mesh *mesh, const char *uvmap, float (*r_looptangents)[4], ReportList *reports)
{
MLoopUV *loopuvs;
float (*loopnors)[3];
/* Check we have valid texture coordinates first! */
if (uvmap) {
loopuvs = CustomData_get_layer_named(&mesh->ldata, CD_MLOOPUV, uvmap);
}
else {
loopuvs = CustomData_get_layer(&mesh->ldata, CD_MLOOPUV);
}
if (!loopuvs) {
2014-01-15 10:40:28 +01:00
BKE_reportf(reports, RPT_ERROR, "Tangent space computation needs an UVMap, \"%s\" not found, aborting", uvmap);
return;
}
loopnors = CustomData_get_layer(&mesh->ldata, CD_NORMAL);
if (!loopnors) {
2014-01-15 10:40:28 +01:00
BKE_report(reports, RPT_ERROR, "Tangent space computation needs loop normals, none found, aborting");
return;
}
BKE_mesh_loop_tangents_ex(mesh->mvert, mesh->totvert, mesh->mloop, r_looptangents,
loopnors, loopuvs, mesh->totloop, mesh->mpoly, mesh->totpoly, reports);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Polygon Calculations
* \{ */
/*
* COMPUTE POLY NORMAL
*
* Computes the normal of a planar
* polygon See Graphics Gems for
* computing newell normal.
*
*/
static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float normal[3])
{
const int nverts = mpoly->totloop;
2014-04-27 22:02:25 +10:00
const float *v_prev = mvert[loopstart[nverts - 1].v].co;
const float *v_curr;
int i;
zero_v3(normal);
/* Newell's Method */
for (i = 0; i < nverts; i++) {
v_curr = mvert[loopstart[i].v].co;
add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
v_prev = v_curr;
}
if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
normal[2] = 1.0f; /* other axis set to 0.0 */
}
}
void BKE_mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no);
}
else if (mpoly->totloop == 3) {
normal_tri_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
/* duplicate of function above _but_ takes coords rather then mverts */
static void mesh_calc_ngon_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float normal[3])
{
const int nverts = mpoly->totloop;
2014-04-27 22:02:25 +10:00
const float *v_prev = vertex_coords[loopstart[nverts - 1].v];
const float *v_curr;
int i;
zero_v3(normal);
/* Newell's Method */
for (i = 0; i < nverts; i++) {
v_curr = vertex_coords[loopstart[i].v];
add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
v_prev = v_curr;
}
if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
normal[2] = 1.0f; /* other axis set to 0.0 */
}
}
void BKE_mesh_calc_poly_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, no);
}
else if (mpoly->totloop == 3) {
normal_tri_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v]
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v],
vertex_coords[loopstart[3].v]
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
static void mesh_calc_ngon_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float cent[3])
{
const float w = 1.0f / (float)mpoly->totloop;
int i;
zero_v3(cent);
for (i = 0; i < mpoly->totloop; i++) {
madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w);
}
}
void BKE_mesh_calc_poly_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float cent[3])
{
if (mpoly->totloop == 3) {
cent_tri_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
cent_quad_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
mesh_calc_ngon_center(mpoly, loopstart, mvarray, cent);
}
}
/* note, passing polynormal is only a speedup so we can skip calculating it */
float BKE_mesh_calc_poly_area(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray)
{
if (mpoly->totloop == 3) {
return area_tri_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
return area_quad_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
int i;
MLoop *l_iter = loopstart;
float area;
float (*vertexcos)[3] = BLI_array_alloca(vertexcos, (size_t)mpoly->totloop);
/* pack vertex cos into an array for area_poly_v3 */
for (i = 0; i < mpoly->totloop; i++, l_iter++) {
copy_v3_v3(vertexcos[i], mvarray[l_iter->v].co);
}
/* finally calculate the area */
area = area_poly_v3((const float (*)[3])vertexcos, (unsigned int)mpoly->totloop);
return area;
}
}
/* note, results won't be correct if polygon is non-planar */
static float mesh_calc_poly_planar_area_centroid(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float cent[3])
{
int i;
float tri_area;
float total_area = 0.0f;
float v1[3], v2[3], v3[3], normal[3], tri_cent[3];
BKE_mesh_calc_poly_normal(mpoly, loopstart, mvarray, normal);
copy_v3_v3(v1, mvarray[loopstart[0].v].co);
copy_v3_v3(v2, mvarray[loopstart[1].v].co);
zero_v3(cent);
for (i = 2; i < mpoly->totloop; i++) {
copy_v3_v3(v3, mvarray[loopstart[i].v].co);
tri_area = area_tri_signed_v3(v1, v2, v3, normal);
total_area += tri_area;
cent_tri_v3(tri_cent, v1, v2, v3);
madd_v3_v3fl(cent, tri_cent, tri_area);
copy_v3_v3(v2, v3);
}
mul_v3_fl(cent, 1.0f / total_area);
return total_area;
}
#if 0 /* slow version of the function below */
void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float angles[])
{
MLoop *ml;
MLoop *mloop = &loopstart[-mpoly->loopstart];
int j;
for (j = 0, ml = loopstart; j < mpoly->totloop; j++, ml++) {
MLoop *ml_prev = ME_POLY_LOOP_PREV(mloop, mpoly, j);
MLoop *ml_next = ME_POLY_LOOP_NEXT(mloop, mpoly, j);
float e1[3], e2[3];
sub_v3_v3v3(e1, mvarray[ml_next->v].co, mvarray[ml->v].co);
sub_v3_v3v3(e2, mvarray[ml_prev->v].co, mvarray[ml->v].co);
angles[j] = (float)M_PI - angle_v3v3(e1, e2);
}
}
#else /* equivalent the function above but avoid multiple subtractions + normalize */
void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float angles[])
{
float nor_prev[3];
float nor_next[3];
int i_this = mpoly->totloop - 1;
int i_next = 0;
sub_v3_v3v3(nor_prev, mvarray[loopstart[i_this - 1].v].co, mvarray[loopstart[i_this].v].co);
normalize_v3(nor_prev);
while (i_next < mpoly->totloop) {
sub_v3_v3v3(nor_next, mvarray[loopstart[i_this].v].co, mvarray[loopstart[i_next].v].co);
normalize_v3(nor_next);
angles[i_this] = angle_normalized_v3v3(nor_prev, nor_next);
/* step */
copy_v3_v3(nor_prev, nor_next);
i_this = i_next;
i_next++;
}
}
#endif
void BKE_mesh_poly_edgehash_insert(EdgeHash *ehash, const MPoly *mp, const MLoop *mloop)
{
const MLoop *ml, *ml_next;
int i = mp->totloop;
ml_next = mloop; /* first loop */
ml = &ml_next[i - 1]; /* last loop */
while (i-- != 0) {
BLI_edgehash_reinsert(ehash, ml->v, ml_next->v, NULL);
ml = ml_next;
ml_next++;
}
}
void BKE_mesh_poly_edgebitmap_insert(unsigned int *edge_bitmap, const MPoly *mp, const MLoop *mloop)
{
const MLoop *ml;
int i = mp->totloop;
ml = mloop;
while (i-- != 0) {
BLI_BITMAP_SET(edge_bitmap, ml->e);
ml++;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Center Calculation
* \{ */
bool BKE_mesh_center_median(Mesh *me, float cent[3])
{
int i = me->totvert;
MVert *mvert;
zero_v3(cent);
for (mvert = me->mvert; i--; mvert++) {
add_v3_v3(cent, mvert->co);
}
/* otherwise we get NAN for 0 verts */
if (me->totvert) {
mul_v3_fl(cent, 1.0f / (float)me->totvert);
}
return (me->totvert != 0);
}
bool BKE_mesh_center_bounds(Mesh *me, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if (BKE_mesh_minmax(me, min, max)) {
mid_v3_v3v3(cent, min, max);
return true;
}
return false;
}
bool BKE_mesh_center_centroid(Mesh *me, float cent[3])
{
int i = me->totpoly;
MPoly *mpoly;
float poly_area;
float total_area = 0.0f;
float poly_cent[3];
zero_v3(cent);
/* calculate a weighted average of polygon centroids */
for (mpoly = me->mpoly; i--; mpoly++) {
poly_area = mesh_calc_poly_planar_area_centroid(mpoly, me->mloop + mpoly->loopstart, me->mvert, poly_cent);
madd_v3_v3fl(cent, poly_cent, poly_area);
total_area += poly_area;
}
/* otherwise we get NAN for 0 polys */
if (me->totpoly) {
mul_v3_fl(cent, 1.0f / total_area);
}
/* zero area faces cause this, fallback to median */
if (UNLIKELY(!is_finite_v3(cent))) {
return BKE_mesh_center_median(me, cent);
}
return (me->totpoly != 0);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name NGon Tessellation (NGon/Tessface Conversion)
* \{ */
/**
* Convert a triangle or quadrangle of loop/poly data to tessface data
*/
void BKE_mesh_loops_to_mface_corners(
CustomData *fdata, CustomData *ldata,
2014-01-22 02:56:52 +11:00
CustomData *pdata, unsigned int lindex[4], int findex,
const int polyindex,
const int mf_len, /* 3 or 4 */
/* cache values to avoid lookups every time */
const int numTex, /* CustomData_number_of_layers(pdata, CD_MTEXPOLY) */
const int numCol, /* CustomData_number_of_layers(ldata, CD_MLOOPCOL) */
const bool hasPCol, /* CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL) */
const bool hasOrigSpace, /* CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP) */
const bool hasLNor /* CustomData_has_layer(ldata, CD_NORMAL) */
)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
int i, j;
for (i = 0; i < numTex; i++) {
texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i);
ME_MTEXFACE_CPY(texface, texpoly);
for (j = 0; j < mf_len; j++) {
2014-01-22 02:56:52 +11:00
mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, (int)lindex[j], i);
copy_v2_v2(texface->uv[j], mloopuv->uv);
}
}
for (i = 0; i < numCol; i++) {
mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);
for (j = 0; j < mf_len; j++) {
2014-01-22 02:56:52 +11:00
mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, (int)lindex[j], i);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
if (hasPCol) {
mcol = CustomData_get(fdata, findex, CD_PREVIEW_MCOL);
for (j = 0; j < mf_len; j++) {
2014-01-22 02:56:52 +11:00
mloopcol = CustomData_get(ldata, (int)lindex[j], CD_PREVIEW_MLOOPCOL);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
if (hasOrigSpace) {
OrigSpaceFace *of = CustomData_get(fdata, findex, CD_ORIGSPACE);
OrigSpaceLoop *lof;
for (j = 0; j < mf_len; j++) {
2014-01-22 02:56:52 +11:00
lof = CustomData_get(ldata, (int)lindex[j], CD_ORIGSPACE_MLOOP);
copy_v2_v2(of->uv[j], lof->uv);
}
}
if (hasLNor) {
short (*tlnors)[3] = CustomData_get(fdata, findex, CD_TESSLOOPNORMAL);
for (j = 0; j < mf_len; j++) {
normal_float_to_short_v3(tlnors[j], CustomData_get(ldata, (int)lindex[j], CD_NORMAL));
}
}
}
/**
* Convert all CD layers from loop/poly to tessface data.
*
* \param loopindices is an array of an int[4] per tessface, mapping tessface's verts to loops indices.
*
* \note when mface is not NULL, mface[face_index].v4 is used to test quads, else, loopindices[face_index][3] is used.
*/
void BKE_mesh_loops_to_tessdata(CustomData *fdata, CustomData *ldata, CustomData *pdata, MFace *mface,
int *polyindices, unsigned int (*loopindices)[4], const int num_faces)
{
/* Note: performances are sub-optimal when we get a NULL mface, we could be ~25% quicker with dedicated code...
* Issue is, unless having two different functions with nearly the same code, there's not much ways to solve
* this. Better imho to live with it for now. :/ --mont29
*/
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const bool hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
const bool hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
const bool hasLoopNormal = CustomData_has_layer(ldata, CD_NORMAL);
int findex, i, j;
const int *pidx;
unsigned int (*lidx)[4];
for (i = 0; i < numTex; i++) {
MTFace *texface = CustomData_get_layer_n(fdata, CD_MTFACE, i);
MTexPoly *texpoly = CustomData_get_layer_n(pdata, CD_MTEXPOLY, i);
MLoopUV *mloopuv = CustomData_get_layer_n(ldata, CD_MLOOPUV, i);
for (findex = 0, pidx = polyindices, lidx = loopindices;
findex < num_faces;
pidx++, lidx++, findex++, texface++)
{
ME_MTEXFACE_CPY(texface, &texpoly[*pidx]);
for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
copy_v2_v2(texface->uv[j], mloopuv[(*lidx)[j]].uv);
}
}
}
for (i = 0; i < numCol; i++) {
MCol (*mcol)[4] = CustomData_get_layer_n(fdata, CD_MCOL, i);
MLoopCol *mloopcol = CustomData_get_layer_n(ldata, CD_MLOOPCOL, i);
for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, mcol++) {
for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
MESH_MLOOPCOL_TO_MCOL(&mloopcol[(*lidx)[j]], &(*mcol)[j]);
}
}
}
if (hasPCol) {
MCol (*mcol)[4] = CustomData_get_layer(fdata, CD_PREVIEW_MCOL);
MLoopCol *mloopcol = CustomData_get_layer(ldata, CD_PREVIEW_MLOOPCOL);
for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, mcol++) {
for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
MESH_MLOOPCOL_TO_MCOL(&mloopcol[(*lidx)[j]], &(*mcol)[j]);
}
}
}
if (hasOrigSpace) {
OrigSpaceFace *of = CustomData_get_layer(fdata, CD_ORIGSPACE);
OrigSpaceLoop *lof = CustomData_get_layer(ldata, CD_ORIGSPACE_MLOOP);
for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, of++) {
for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
copy_v2_v2(of->uv[j], lof[(*lidx)[j]].uv);
}
}
}
if (hasLoopNormal) {
short (*fnors)[4][3] = CustomData_get_layer(fdata, CD_TESSLOOPNORMAL);
float (*lnors)[3] = CustomData_get_layer(ldata, CD_NORMAL);
for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, fnors++) {
for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
normal_float_to_short_v3((*fnors)[j], lnors[(*lidx)[j]]);
}
}
}
}
/**
* Recreate tessellation.
*
* \param do_face_nor_copy controls whether the normals from the poly are copied to the tessellated faces.
*
* \return number of tessellation faces.
*/
int BKE_mesh_recalc_tessellation(CustomData *fdata, CustomData *ldata, CustomData *pdata,
MVert *mvert, int totface, int totloop, int totpoly, const bool do_face_nor_cpy)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
#define USE_TESSFACE_QUADS /* NEEDS FURTHER TESTING */
/* We abuse MFace->edcode to tag quad faces. See below for details. */
#define TESSFACE_IS_QUAD 1
const int looptris_tot = poly_to_tri_count(totpoly, totloop);
MPoly *mp, *mpoly;
MLoop *ml, *mloop;
MFace *mface, *mf;
MemArena *arena = NULL;
int *mface_to_poly_map;
unsigned int (*lindices)[4];
int poly_index, mface_index;
unsigned int j;
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
/* allocate the length of totfaces, avoid many small reallocs,
* if all faces are tri's it will be correct, quads == 2x allocs */
/* take care. we are _not_ calloc'ing so be sure to initialize each field */
mface_to_poly_map = MEM_mallocN(sizeof(*mface_to_poly_map) * (size_t)looptris_tot, __func__);
mface = MEM_mallocN(sizeof(*mface) * (size_t)looptris_tot, __func__);
lindices = MEM_mallocN(sizeof(*lindices) * (size_t)looptris_tot, __func__);
mface_index = 0;
mp = mpoly;
for (poly_index = 0; poly_index < totpoly; poly_index++, mp++) {
const unsigned int mp_loopstart = (unsigned int)mp->loopstart;
const unsigned int mp_totloop = (unsigned int)mp->totloop;
unsigned int l1, l2, l3, l4;
unsigned int *lidx;
if (mp_totloop < 3) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
#define ML_TO_MF(i1, i2, i3) \
mface_to_poly_map[mface_index] = poly_index; \
mf = &mface[mface_index]; \
lidx = lindices[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
l1 = mp_loopstart + i1; \
l2 = mp_loopstart + i2; \
l3 = mp_loopstart + i3; \
mf->v1 = mloop[l1].v; \
mf->v2 = mloop[l2].v; \
mf->v3 = mloop[l3].v; \
mf->v4 = 0; \
lidx[0] = l1; \
lidx[1] = l2; \
lidx[2] = l3; \
lidx[3] = 0; \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
mf->edcode = 0; \
(void)0
/* ALMOST IDENTICAL TO DEFINE ABOVE (see EXCEPTION) */
#define ML_TO_MF_QUAD() \
mface_to_poly_map[mface_index] = poly_index; \
mf = &mface[mface_index]; \
lidx = lindices[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
l1 = mp_loopstart + 0; /* EXCEPTION */ \
l2 = mp_loopstart + 1; /* EXCEPTION */ \
l3 = mp_loopstart + 2; /* EXCEPTION */ \
l4 = mp_loopstart + 3; /* EXCEPTION */ \
mf->v1 = mloop[l1].v; \
mf->v2 = mloop[l2].v; \
mf->v3 = mloop[l3].v; \
mf->v4 = mloop[l4].v; \
lidx[0] = l1; \
lidx[1] = l2; \
lidx[2] = l3; \
lidx[3] = l4; \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
mf->edcode = TESSFACE_IS_QUAD; \
(void)0
else if (mp_totloop == 3) {
ML_TO_MF(0, 1, 2);
mface_index++;
}
else if (mp_totloop == 4) {
#ifdef USE_TESSFACE_QUADS
ML_TO_MF_QUAD();
mface_index++;
#else
ML_TO_MF(0, 1, 2);
mface_index++;
ML_TO_MF(0, 2, 3);
mface_index++;
#endif
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
const float *co_curr, *co_prev;
float normal[3];
float axis_mat[3][3];
float (*projverts)[2];
unsigned int (*tris)[3];
const unsigned int totfilltri = mp_totloop - 2;
if (UNLIKELY(arena == NULL)) {
arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
}
tris = BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)totfilltri);
projverts = BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)mp_totloop);
zero_v3(normal);
/* calc normal */
ml = mloop + mp_loopstart;
co_prev = mvert[ml[mp_totloop - 1].v].co;
for (j = 0; j < mp_totloop; j++, ml++) {
co_curr = mvert[ml->v].co;
add_newell_cross_v3_v3v3(normal, co_prev, co_curr);
co_prev = co_curr;
}
if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
normal[2] = 1.0f;
}
/* project verts to 2d */
axis_dominant_v3_to_m3(axis_mat, normal);
ml = mloop + mp_loopstart;
for (j = 0; j < mp_totloop; j++, ml++) {
mul_v2_m3v3(projverts[j], axis_mat, mvert[ml->v].co);
}
BLI_polyfill_calc_arena((const float (*)[2])projverts, mp_totloop, tris, arena);
/* apply fill */
for (j = 0; j < totfilltri; j++) {
unsigned int *tri = tris[j];
lidx = lindices[mface_index];
mface_to_poly_map[mface_index] = poly_index;
mf = &mface[mface_index];
/* set loop indices, transformed to vert indices later */
l1 = mp_loopstart + tri[0];
l2 = mp_loopstart + tri[1];
l3 = mp_loopstart + tri[2];
/* sort loop indices to ensure winding is correct */
if (l1 > l2) SWAP(unsigned int, l1, l2);
if (l2 > l3) SWAP(unsigned int, l2, l3);
if (l1 > l2) SWAP(unsigned int, l1, l2);
mf->v1 = mloop[l1].v;
mf->v2 = mloop[l2].v;
mf->v3 = mloop[l3].v;
mf->v4 = 0;
lidx[0] = l1;
lidx[1] = l2;
lidx[2] = l3;
lidx[3] = 0;
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
mf->edcode = 0;
mface_index++;
}
BLI_memarena_clear(arena);
}
}
if (arena) {
BLI_memarena_free(arena);
arena = NULL;
}
CustomData_free(fdata, totface);
totface = mface_index;
BLI_assert(totface <= looptris_tot);
/* not essential but without this we store over-alloc'd memory in the CustomData layers */
if (LIKELY(looptris_tot != totface)) {
mface = MEM_reallocN(mface, sizeof(*mface) * (size_t)totface);
mface_to_poly_map = MEM_reallocN(mface_to_poly_map, sizeof(*mface_to_poly_map) * (size_t)totface);
}
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
/* CD_ORIGINDEX will contain an array of indices from tessfaces to the polygons
* they are directly tessellated from */
CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, mface_to_poly_map, totface);
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
if (do_face_nor_cpy) {
/* If polys have a normals layer, copying that to faces can help
* avoid the need to recalculate normals later */
if (CustomData_has_layer(pdata, CD_NORMAL)) {
float (*pnors)[3] = CustomData_get_layer(pdata, CD_NORMAL);
float (*fnors)[3] = CustomData_add_layer(fdata, CD_NORMAL, CD_CALLOC, NULL, totface);
for (mface_index = 0; mface_index < totface; mface_index++) {
copy_v3_v3(fnors[mface_index], pnors[mface_to_poly_map[mface_index]]);
}
}
}
/* NOTE: quad detection issue - forth vertidx vs forth loopidx:
* Polygons take care of their loops ordering, hence not of their vertices ordering.
* Currently, our tfaces' forth vertex index might be 0 even for a quad. However, we know our forth loop index is
* never 0 for quads (because they are sorted for polygons, and our quads are still mere copies of their polygons).
* So we pass NULL as MFace pointer, and BKE_mesh_loops_to_tessdata will use the forth loop index as quad test.
* ...
*/
BKE_mesh_loops_to_tessdata(fdata, ldata, pdata, NULL, mface_to_poly_map, lindices, totface);
/* NOTE: quad detection issue - forth vertidx vs forth loopidx:
* ...However, most TFace code uses 'MFace->v4 == 0' test to check whether it is a tri or quad.
* test_index_face() will check this and rotate the tessellated face if needed.
*/
#ifdef USE_TESSFACE_QUADS
mf = mface;
for (mface_index = 0; mface_index < totface; mface_index++, mf++) {
if (mf->edcode == TESSFACE_IS_QUAD) {
test_index_face(mf, fdata, mface_index, 4);
mf->edcode = 0;
}
}
#endif
MEM_freeN(lindices);
return totface;
#undef USE_TESSFACE_SPEEDUP
#undef USE_TESSFACE_QUADS
#undef ML_TO_MF
#undef ML_TO_MF_QUAD
}
#ifdef USE_BMESH_SAVE_AS_COMPAT
/**
* This function recreates a tessellation.
* returns number of tessellation faces.
*
* for forwards compat only quad->tri polys to mface, skip ngons.
*/
int BKE_mesh_mpoly_to_mface(struct CustomData *fdata, struct CustomData *ldata,
struct CustomData *pdata, int totface, int UNUSED(totloop), int totpoly)
{
MLoop *mloop;
2014-01-22 02:56:52 +11:00
unsigned int lindex[4];
int i;
int k;
MPoly *mp, *mpoly;
MFace *mface, *mf;
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const bool hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
const bool hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
const bool hasLNor = CustomData_has_layer(ldata, CD_NORMAL);
/* over-alloc, ngons will be skipped */
mface = MEM_mallocN(sizeof(*mface) * (size_t)totpoly, __func__);
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
mp = mpoly;
k = 0;
for (i = 0; i < totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
const unsigned int mp_loopstart = (unsigned int)mp->loopstart;
mf = &mface[k];
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
mf->v1 = mp_loopstart + 0;
mf->v2 = mp_loopstart + 1;
mf->v3 = mp_loopstart + 2;
mf->v4 = (mp->totloop == 4) ? (mp_loopstart + 3) : 0;
/* abuse edcode for temp storage and clear next loop */
mf->edcode = (char)mp->totloop; /* only ever 3 or 4 */
k++;
}
}
CustomData_free(fdata, totface);
totface = k;
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
mp = mpoly;
k = 0;
for (i = 0; i < totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
mf = &mface[k];
if (mf->edcode == 3) {
/* sort loop indices to ensure winding is correct */
/* NO SORT - looks like we can skip this */
2014-01-22 02:56:52 +11:00
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = 0; /* unused */
/* transform loop indices to vert indices */
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 3,
numTex, numCol, hasPCol, hasOrigSpace, hasLNor);
test_index_face(mf, fdata, k, 3);
}
else {
/* sort loop indices to ensure winding is correct */
/* NO SORT - looks like we can skip this */
2014-01-22 02:56:52 +11:00
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = mf->v4;
/* transform loop indices to vert indices */
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
mf->v4 = mloop[mf->v4].v;
BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 4,
numTex, numCol, hasPCol, hasOrigSpace, hasLNor);
test_index_face(mf, fdata, k, 4);
}
mf->edcode = 0;
k++;
}
}
return k;
}
#endif /* USE_BMESH_SAVE_AS_COMPAT */
static void bm_corners_to_loops_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
MFace *mface, int totloop, int findex, int loopstart, int numTex, int numCol)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
MFace *mf;
int i;
mf = mface + findex;
for (i = 0; i < numTex; i++) {
texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, findex, i);
ME_MTEXFACE_CPY(texpoly, texface);
mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, loopstart, i);
copy_v2_v2(mloopuv->uv, texface->uv[0]); mloopuv++;
copy_v2_v2(mloopuv->uv, texface->uv[1]); mloopuv++;
copy_v2_v2(mloopuv->uv, texface->uv[2]); mloopuv++;
if (mf->v4) {
copy_v2_v2(mloopuv->uv, texface->uv[3]); mloopuv++;
}
}
for (i = 0; i < numCol; i++) {
mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, loopstart, i);
mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[0]); mloopcol++;
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[1]); mloopcol++;
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[2]); mloopcol++;
if (mf->v4) {
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[3]); mloopcol++;
}
}
if (CustomData_has_layer(fdata, CD_TESSLOOPNORMAL)) {
float (*lnors)[3] = CustomData_get(ldata, loopstart, CD_NORMAL);
short (*tlnors)[3] = CustomData_get(fdata, findex, CD_TESSLOOPNORMAL);
const int max = mf->v4 ? 4 : 3;
for (i = 0; i < max; i++, lnors++, tlnors++) {
normal_short_to_float_v3(*lnors, *tlnors);
}
}
if (CustomData_has_layer(fdata, CD_MDISPS)) {
MDisps *ld = CustomData_get(ldata, loopstart, CD_MDISPS);
MDisps *fd = CustomData_get(fdata, findex, CD_MDISPS);
float (*disps)[3] = fd->disps;
int tot = mf->v4 ? 4 : 3;
int corners;
if (CustomData_external_test(fdata, CD_MDISPS)) {
if (id && fdata->external) {
CustomData_external_add(ldata, id, CD_MDISPS,
totloop, fdata->external->filename);
}
}
corners = multires_mdisp_corners(fd);
if (corners == 0) {
/* Empty MDisp layers appear in at least one of the sintel.blend files.
* Not sure why this happens, but it seems fine to just ignore them here.
* If (corners == 0) for a non-empty layer though, something went wrong. */
BLI_assert(fd->totdisp == 0);
}
else {
const int side = (int)sqrtf((float)(fd->totdisp / corners));
const int side_sq = side * side;
const size_t disps_size = sizeof(float[3]) * (size_t)side_sq;
for (i = 0; i < tot; i++, disps += side_sq, ld++) {
ld->totdisp = side_sq;
ld->level = (int)(logf((float)side - 1.0f) / (float)M_LN2) + 1;
if (ld->disps)
MEM_freeN(ld->disps);
ld->disps = MEM_mallocN(disps_size, "converted loop mdisps");
if (fd->disps) {
memcpy(ld->disps, disps, disps_size);
}
else {
memset(ld->disps, 0, disps_size);
}
}
}
}
}
void BKE_mesh_convert_mfaces_to_mpolys(Mesh *mesh)
{
BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
mesh->medge, mesh->mface,
&mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);
BKE_mesh_update_customdata_pointers(mesh, true);
}
/* the same as BKE_mesh_convert_mfaces_to_mpolys but oriented to be used in do_versions from readfile.c
* the difference is how active/render/clone/stencil indices are handled here
*
* normally thay're being set from pdata which totally makes sense for meshes which are already
* converted to bmesh structures, but when loading older files indices shall be updated in other
* way around, so newly added pdata and ldata would have this indices set based on fdata layer
*
* this is normally only needed when reading older files, in all other cases BKE_mesh_convert_mfaces_to_mpolys
* shall be always used
*/
void BKE_mesh_do_versions_convert_mfaces_to_mpolys(Mesh *mesh)
{
BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
mesh->medge, mesh->mface,
&mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);
CustomData_bmesh_do_versions_update_active_layers(&mesh->fdata, &mesh->pdata, &mesh->ldata);
BKE_mesh_update_customdata_pointers(mesh, true);
}
void BKE_mesh_convert_mfaces_to_mpolys_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
int totedge_i, int totface_i, int totloop_i, int totpoly_i,
MEdge *medge, MFace *mface,
int *r_totloop, int *r_totpoly,
MLoop **r_mloop, MPoly **r_mpoly)
{
MFace *mf;
MLoop *ml, *mloop;
MPoly *mp, *mpoly;
MEdge *me;
EdgeHash *eh;
int numTex, numCol;
int i, j, totloop, totpoly, *polyindex;
2014-03-26 07:57:13 +11:00
/* old flag, clear to allow for reuse */
#define ME_FGON (1 << 3)
/* just in case some of these layers are filled in (can happen with python created meshes) */
CustomData_free(ldata, totloop_i);
CustomData_free(pdata, totpoly_i);
totpoly = totface_i;
mpoly = MEM_callocN(sizeof(MPoly) * (size_t)totpoly, "mpoly converted");
CustomData_add_layer(pdata, CD_MPOLY, CD_ASSIGN, mpoly, totpoly);
numTex = CustomData_number_of_layers(fdata, CD_MTFACE);
numCol = CustomData_number_of_layers(fdata, CD_MCOL);
totloop = 0;
mf = mface;
for (i = 0; i < totface_i; i++, mf++) {
totloop += mf->v4 ? 4 : 3;
}
mloop = MEM_callocN(sizeof(MLoop) * (size_t)totloop, "mloop converted");
CustomData_add_layer(ldata, CD_MLOOP, CD_ASSIGN, mloop, totloop);
CustomData_to_bmeshpoly(fdata, pdata, ldata, totloop, totpoly);
if (id) {
/* ensure external data is transferred */
CustomData_external_read(fdata, id, CD_MASK_MDISPS, totface_i);
}
eh = BLI_edgehash_new_ex(__func__, (unsigned int)totedge_i);
/* build edge hash */
me = medge;
for (i = 0; i < totedge_i; i++, me++) {
BLI_edgehash_insert(eh, me->v1, me->v2, SET_UINT_IN_POINTER(i));
/* unrelated but avoid having the FGON flag enabled, so we can reuse it later for something else */
me->flag &= ~ME_FGON;
}
polyindex = CustomData_get_layer(fdata, CD_ORIGINDEX);
j = 0; /* current loop index */
ml = mloop;
mf = mface;
mp = mpoly;
for (i = 0; i < totface_i; i++, mf++, mp++) {
mp->loopstart = j;
mp->totloop = mf->v4 ? 4 : 3;
mp->mat_nr = mf->mat_nr;
mp->flag = mf->flag;
# define ML(v1, v2) { \
ml->v = mf->v1; \
ml->e = GET_UINT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); \
ml++; j++; \
} (void)0
ML(v1, v2);
ML(v2, v3);
if (mf->v4) {
ML(v3, v4);
ML(v4, v1);
}
else {
ML(v3, v1);
}
# undef ML
bm_corners_to_loops_ex(id, fdata, ldata, pdata, mface, totloop, i, mp->loopstart, numTex, numCol);
if (polyindex) {
*polyindex = i;
polyindex++;
}
}
/* note, we don't convert NGons at all, these are not even real ngons,
* they have their own UV's, colors etc - its more an editing feature. */
BLI_edgehash_free(eh, NULL);
*r_totpoly = totpoly;
*r_totloop = totloop;
*r_mpoly = mpoly;
*r_mloop = mloop;
2014-03-26 07:57:13 +11:00
#undef ME_FGON
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Flag Flushing
* \{ */
/* update the hide flag for edges and faces from the corresponding
* flag in verts */
void BKE_mesh_flush_hidden_from_verts_ex(const MVert *mvert,
const MLoop *mloop,
MEdge *medge, const int totedge,
MPoly *mpoly, const int totpoly)
{
int i, j;
for (i = 0; i < totedge; i++) {
MEdge *e = &medge[i];
if (mvert[e->v1].flag & ME_HIDE ||
mvert[e->v2].flag & ME_HIDE)
{
e->flag |= ME_HIDE;
}
else {
e->flag &= ~ME_HIDE;
}
}
for (i = 0; i < totpoly; i++) {
MPoly *p = &mpoly[i];
p->flag &= (char)~ME_HIDE;
for (j = 0; j < p->totloop; j++) {
if (mvert[mloop[p->loopstart + j].v].flag & ME_HIDE)
p->flag |= ME_HIDE;
}
}
}
void BKE_mesh_flush_hidden_from_verts(Mesh *me)
{
BKE_mesh_flush_hidden_from_verts_ex(me->mvert, me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
void BKE_mesh_flush_hidden_from_polys_ex(MVert *mvert,
const MLoop *mloop,
MEdge *medge, const int UNUSED(totedge),
const MPoly *mpoly, const int totpoly)
{
const MPoly *mp;
int i;
i = totpoly;
for (mp = mpoly; i--; mp++) {
if (mp->flag & ME_HIDE) {
const MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
mvert[ml->v].flag |= ME_HIDE;
medge[ml->e].flag |= ME_HIDE;
}
}
}
i = totpoly;
for (mp = mpoly; i--; mp++) {
if ((mp->flag & ME_HIDE) == 0) {
const MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
mvert[ml->v].flag &= (char)~ME_HIDE;
medge[ml->e].flag &= (char)~ME_HIDE;
}
}
}
}
void BKE_mesh_flush_hidden_from_polys(Mesh *me)
{
BKE_mesh_flush_hidden_from_polys_ex(me->mvert, me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
/**
* simple poly -> vert/edge selection.
*/
void BKE_mesh_flush_select_from_polys_ex(MVert *mvert, const int totvert,
const MLoop *mloop,
MEdge *medge, const int totedge,
const MPoly *mpoly, const int totpoly)
{
MVert *mv;
MEdge *med;
const MPoly *mp;
int i;
i = totvert;
for (mv = mvert; i--; mv++) {
mv->flag &= (char)~SELECT;
}
i = totedge;
for (med = medge; i--; med++) {
med->flag &= ~SELECT;
}
i = totpoly;
for (mp = mpoly; i--; mp++) {
/* assume if its selected its not hidden and none of its verts/edges are hidden
* (a common assumption)*/
if (mp->flag & ME_FACE_SEL) {
const MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
mvert[ml->v].flag |= SELECT;
medge[ml->e].flag |= SELECT;
}
}
}
}
void BKE_mesh_flush_select_from_polys(Mesh *me)
{
BKE_mesh_flush_select_from_polys_ex(me->mvert, me->totvert,
me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
void BKE_mesh_flush_select_from_verts_ex(const MVert *mvert, const int UNUSED(totvert),
const MLoop *mloop,
MEdge *medge, const int totedge,
MPoly *mpoly, const int totpoly)
{
MEdge *med;
MPoly *mp;
int i;
/* edges */
i = totedge;
for (med = medge; i--; med++) {
if ((med->flag & ME_HIDE) == 0) {
if ((mvert[med->v1].flag & SELECT) && (mvert[med->v2].flag & SELECT)) {
med->flag |= SELECT;
}
else {
med->flag &= ~SELECT;
}
}
}
/* polys */
i = totpoly;
for (mp = mpoly; i--; mp++) {
if ((mp->flag & ME_HIDE) == 0) {
2014-03-20 22:56:28 +11:00
bool ok = true;
const MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
if ((mvert[ml->v].flag & SELECT) == 0) {
2014-03-20 22:56:28 +11:00
ok = false;
break;
}
}
if (ok) {
mp->flag |= ME_FACE_SEL;
}
else {
mp->flag &= (char)~ME_FACE_SEL;
}
}
}
}
void BKE_mesh_flush_select_from_verts(Mesh *me)
{
BKE_mesh_flush_select_from_verts_ex(me->mvert, me->totvert,
me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Spatial Calculation
* \{ */
/**
* This function takes the difference between 2 vertex-coord-arrays
* (\a vert_cos_src, \a vert_cos_dst),
* and applies the difference to \a vert_cos_new relative to \a vert_cos_org.
*
* \param vert_cos_src reference deform source.
* \param vert_cos_dst reference deform destination.
*
* \param vert_cos_org reference for the output location.
* \param vert_cos_new resulting coords.
*/
void BKE_mesh_calc_relative_deform(
const MPoly *mpoly, const int totpoly,
const MLoop *mloop, const int totvert,
const float (*vert_cos_src)[3],
const float (*vert_cos_dst)[3],
const float (*vert_cos_org)[3],
float (*vert_cos_new)[3])
{
const MPoly *mp;
int i;
int *vert_accum = MEM_callocN(sizeof(*vert_accum) * (size_t)totvert, __func__);
memset(vert_cos_new, '\0', sizeof(*vert_cos_new) * (size_t)totvert);
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
const MLoop *loopstart = mloop + mp->loopstart;
int j;
for (j = 0; j < mp->totloop; j++) {
unsigned int v_prev = loopstart[(mp->totloop + (j - 1)) % mp->totloop].v;
unsigned int v_curr = loopstart[j].v;
unsigned int v_next = loopstart[(j + 1) % mp->totloop].v;
float tvec[3];
barycentric_transform(
tvec, vert_cos_dst[v_curr],
vert_cos_org[v_prev], vert_cos_org[v_curr], vert_cos_org[v_next],
vert_cos_src[v_prev], vert_cos_src[v_curr], vert_cos_src[v_next]
);
add_v3_v3(vert_cos_new[v_curr], tvec);
vert_accum[v_curr] += 1;
}
}
for (i = 0; i < totvert; i++) {
if (vert_accum[i]) {
mul_v3_fl(vert_cos_new[i], 1.0f / (float)vert_accum[i]);
}
else {
copy_v3_v3(vert_cos_new[i], vert_cos_org[i]);
}
}
MEM_freeN(vert_accum);
}
/** \} */