This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/kernel/geom/geom_motion_curve.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

181 lines
6.7 KiB
C++
Raw Normal View History

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Motion Curve Primitive
*
* These are stored as regular curves, plus extra positions and radii at times
* other than the frame center. Computing the curve keys at a given ray time is
* a matter of interpolation of the two steps between which the ray time lies.
*
* The extra curve keys are stored as ATTR_STD_MOTION_VERTEX_POSITION.
*/
#ifdef __HAIR__
ccl_device_inline int find_attribute_curve_motion(KernelGlobals *kg,
int object,
uint id,
AttributeElement *elem)
{
/* todo: find a better (faster) solution for this, maybe store offset per object.
*
* NOTE: currently it's not a bottleneck because in test scenes the loop below runs
* zero iterations and rendering is really slow with motion curves. For until other
* areas are speed up it's probably not so crucial to optimize this out.
*/
uint attr_offset = object_attribute_map_offset(kg, object) + ATTR_PRIM_GEOMETRY;
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
while (attr_map.x != id) {
attr_offset += ATTR_PRIM_TYPES;
attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
}
*elem = (AttributeElement)attr_map.y;
/* return result */
return (attr_map.y == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : (int)attr_map.z;
}
ccl_device_inline void motion_curve_keys_for_step_linear(KernelGlobals *kg,
int offset,
int numkeys,
int numsteps,
int step,
int k0,
int k1,
float4 keys[2])
{
if (step == numsteps) {
2017-01-16 20:08:19 +01:00
/* center step: regular key location */
keys[0] = kernel_tex_fetch(__curve_keys, k0);
keys[1] = kernel_tex_fetch(__curve_keys, k1);
}
else {
2017-01-16 20:08:19 +01:00
/* center step is not stored in this array */
if (step > numsteps)
step--;
offset += step * numkeys;
keys[0] = kernel_tex_fetch(__attributes_float3, offset + k0);
keys[1] = kernel_tex_fetch(__attributes_float3, offset + k1);
}
}
/* return 2 curve key locations */
ccl_device_inline void motion_curve_keys_linear(
KernelGlobals *kg, int object, int prim, float time, int k0, int k1, float4 keys[2])
{
/* get motion info */
int numsteps, numkeys;
object_motion_info(kg, object, &numsteps, NULL, &numkeys);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps * 2;
int step = min((int)(time * maxstep), maxstep - 1);
float t = time * maxstep - step;
/* find attribute */
AttributeElement elem;
int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch key coordinates */
float4 next_keys[2];
motion_curve_keys_for_step_linear(kg, offset, numkeys, numsteps, step, k0, k1, keys);
motion_curve_keys_for_step_linear(kg, offset, numkeys, numsteps, step + 1, k0, k1, next_keys);
/* interpolate between steps */
keys[0] = (1.0f - t) * keys[0] + t * next_keys[0];
keys[1] = (1.0f - t) * keys[1] + t * next_keys[1];
}
ccl_device_inline void motion_curve_keys_for_step(KernelGlobals *kg,
int offset,
int numkeys,
int numsteps,
int step,
int k0,
int k1,
int k2,
int k3,
float4 keys[4])
{
if (step == numsteps) {
2017-01-16 20:08:19 +01:00
/* center step: regular key location */
keys[0] = kernel_tex_fetch(__curve_keys, k0);
keys[1] = kernel_tex_fetch(__curve_keys, k1);
keys[2] = kernel_tex_fetch(__curve_keys, k2);
keys[3] = kernel_tex_fetch(__curve_keys, k3);
}
else {
2017-01-16 20:08:19 +01:00
/* center step is not stored in this array */
if (step > numsteps)
step--;
offset += step * numkeys;
keys[0] = kernel_tex_fetch(__attributes_float3, offset + k0);
keys[1] = kernel_tex_fetch(__attributes_float3, offset + k1);
keys[2] = kernel_tex_fetch(__attributes_float3, offset + k2);
keys[3] = kernel_tex_fetch(__attributes_float3, offset + k3);
}
}
/* return 2 curve key locations */
ccl_device_inline void motion_curve_keys(KernelGlobals *kg,
int object,
int prim,
float time,
int k0,
int k1,
int k2,
int k3,
float4 keys[4])
{
/* get motion info */
int numsteps, numkeys;
object_motion_info(kg, object, &numsteps, NULL, &numkeys);
/* figure out which steps we need to fetch and their interpolation factor */
int maxstep = numsteps * 2;
int step = min((int)(time * maxstep), maxstep - 1);
float t = time * maxstep - step;
/* find attribute */
AttributeElement elem;
int offset = find_attribute_curve_motion(kg, object, ATTR_STD_MOTION_VERTEX_POSITION, &elem);
kernel_assert(offset != ATTR_STD_NOT_FOUND);
/* fetch key coordinates */
float4 next_keys[4];
motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step, k0, k1, k2, k3, keys);
motion_curve_keys_for_step(kg, offset, numkeys, numsteps, step + 1, k0, k1, k2, k3, next_keys);
/* interpolate between steps */
keys[0] = (1.0f - t) * keys[0] + t * next_keys[0];
keys[1] = (1.0f - t) * keys[1] + t * next_keys[1];
keys[2] = (1.0f - t) * keys[2] + t * next_keys[2];
keys[3] = (1.0f - t) * keys[3] + t * next_keys[3];
}
#endif
CCL_NAMESPACE_END