This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/BKE_cryptomatte.h

67 lines
2.4 KiB
C++
Raw Normal View History

EEVEE Cryptomatte Cryptomatte is a standard to efficiently create mattes for compositing. The renderer outputs the required render passes, which can then be used in the compositor to create masks for specified objects. Unlike the Material and Object Index passes, the objects to isolate are selected in compositing, and mattes will be anti-aliased. Cryptomatte was already available in Cycles this patch adds it to the EEVEE render engine. Original specification can be found at https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf **Accurate mode** Following Cycles, there are two accuracy modes. The difference between the two modes is the number of render samples they take into account to create the render passes. When accurate mode is off the number of levels is used. When accuracy mode is active, the number of render samples is used. **Deviation from standard** Cryptomatte specification is based on a path trace approach where samples and coverage are calculated at the same time. In EEVEE a sample is an exact match on top of a prepared depth buffer. Coverage is at that moment always 1. By sampling multiple times the number of surface hits decides the actual surface coverage for a matte per pixel. **Implementation Overview** When drawing to the cryptomatte GPU buffer the depth of the fragment is matched to the active depth buffer. The hashes of each cryptomatte layer is written in the GPU buffer. The exact layout depends on the active cryptomatte layers. The GPU buffer is downloaded and integrated into an accumulation buffer (stored in CPU RAM). The accumulation buffer stores the hashes + weights for a number of levels, layers per pixel. When a hash already exists the weight will be increased. When the hash doesn't exists it will be added to the buffer. After all the samples have been calculated the accumulation buffer is processed. During this phase the total pixel weights of each layer is mapped to be in a range between 0 and 1. The hashes are also sorted (highest weight first). Blender Kernel now has a `BKE_cryptomatte` header that access to common functions for cryptomatte. This will in the future be used by the API. * Alpha blended materials aren't supported. Alpha blended materials support in render passes needs research how to implement it in a maintainable way for any render pass. This is a list of tasks that needs to be done for the same release that this patch lands on (Blender 2.92) * T82571 Add render tests. * T82572 Documentation. * T82573 Store hashes + Object names in the render result header. * T82574 Use threading to increase performance in accumulation and post processing. * T82575 Merge the cycles and EEVEE settings as they are identical. * T82576 Add RNA to extract the cryptomatte hashes to use in python scripts. Reviewed By: Clément Foucault Maniphest Tasks: T81058 Differential Revision: https://developer.blender.org/D9165
2020-12-04 08:28:43 +01:00
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2020 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#pragma once
#include "BLI_sys_types.h"
#include "DNA_layer_types.h"
EEVEE Cryptomatte Cryptomatte is a standard to efficiently create mattes for compositing. The renderer outputs the required render passes, which can then be used in the compositor to create masks for specified objects. Unlike the Material and Object Index passes, the objects to isolate are selected in compositing, and mattes will be anti-aliased. Cryptomatte was already available in Cycles this patch adds it to the EEVEE render engine. Original specification can be found at https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf **Accurate mode** Following Cycles, there are two accuracy modes. The difference between the two modes is the number of render samples they take into account to create the render passes. When accurate mode is off the number of levels is used. When accuracy mode is active, the number of render samples is used. **Deviation from standard** Cryptomatte specification is based on a path trace approach where samples and coverage are calculated at the same time. In EEVEE a sample is an exact match on top of a prepared depth buffer. Coverage is at that moment always 1. By sampling multiple times the number of surface hits decides the actual surface coverage for a matte per pixel. **Implementation Overview** When drawing to the cryptomatte GPU buffer the depth of the fragment is matched to the active depth buffer. The hashes of each cryptomatte layer is written in the GPU buffer. The exact layout depends on the active cryptomatte layers. The GPU buffer is downloaded and integrated into an accumulation buffer (stored in CPU RAM). The accumulation buffer stores the hashes + weights for a number of levels, layers per pixel. When a hash already exists the weight will be increased. When the hash doesn't exists it will be added to the buffer. After all the samples have been calculated the accumulation buffer is processed. During this phase the total pixel weights of each layer is mapped to be in a range between 0 and 1. The hashes are also sorted (highest weight first). Blender Kernel now has a `BKE_cryptomatte` header that access to common functions for cryptomatte. This will in the future be used by the API. * Alpha blended materials aren't supported. Alpha blended materials support in render passes needs research how to implement it in a maintainable way for any render pass. This is a list of tasks that needs to be done for the same release that this patch lands on (Blender 2.92) * T82571 Add render tests. * T82572 Documentation. * T82573 Store hashes + Object names in the render result header. * T82574 Use threading to increase performance in accumulation and post processing. * T82575 Merge the cycles and EEVEE settings as they are identical. * T82576 Add RNA to extract the cryptomatte hashes to use in python scripts. Reviewed By: Clément Foucault Maniphest Tasks: T81058 Differential Revision: https://developer.blender.org/D9165
2020-12-04 08:28:43 +01:00
#ifdef __cplusplus
extern "C" {
#endif
struct CryptomatteSession;
2020-12-16 16:26:23 +11:00
struct Material;
struct ID;
struct Main;
2020-12-16 16:26:23 +11:00
struct Object;
struct RenderResult;
struct CryptomatteSession *BKE_cryptomatte_init(void);
void BKE_cryptomatte_finish(struct CryptomatteSession *session);
void BKE_cryptomatte_free(struct CryptomatteSession *session);
EEVEE Cryptomatte Cryptomatte is a standard to efficiently create mattes for compositing. The renderer outputs the required render passes, which can then be used in the compositor to create masks for specified objects. Unlike the Material and Object Index passes, the objects to isolate are selected in compositing, and mattes will be anti-aliased. Cryptomatte was already available in Cycles this patch adds it to the EEVEE render engine. Original specification can be found at https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf **Accurate mode** Following Cycles, there are two accuracy modes. The difference between the two modes is the number of render samples they take into account to create the render passes. When accurate mode is off the number of levels is used. When accuracy mode is active, the number of render samples is used. **Deviation from standard** Cryptomatte specification is based on a path trace approach where samples and coverage are calculated at the same time. In EEVEE a sample is an exact match on top of a prepared depth buffer. Coverage is at that moment always 1. By sampling multiple times the number of surface hits decides the actual surface coverage for a matte per pixel. **Implementation Overview** When drawing to the cryptomatte GPU buffer the depth of the fragment is matched to the active depth buffer. The hashes of each cryptomatte layer is written in the GPU buffer. The exact layout depends on the active cryptomatte layers. The GPU buffer is downloaded and integrated into an accumulation buffer (stored in CPU RAM). The accumulation buffer stores the hashes + weights for a number of levels, layers per pixel. When a hash already exists the weight will be increased. When the hash doesn't exists it will be added to the buffer. After all the samples have been calculated the accumulation buffer is processed. During this phase the total pixel weights of each layer is mapped to be in a range between 0 and 1. The hashes are also sorted (highest weight first). Blender Kernel now has a `BKE_cryptomatte` header that access to common functions for cryptomatte. This will in the future be used by the API. * Alpha blended materials aren't supported. Alpha blended materials support in render passes needs research how to implement it in a maintainable way for any render pass. This is a list of tasks that needs to be done for the same release that this patch lands on (Blender 2.92) * T82571 Add render tests. * T82572 Documentation. * T82573 Store hashes + Object names in the render result header. * T82574 Use threading to increase performance in accumulation and post processing. * T82575 Merge the cycles and EEVEE settings as they are identical. * T82576 Add RNA to extract the cryptomatte hashes to use in python scripts. Reviewed By: Clément Foucault Maniphest Tasks: T81058 Differential Revision: https://developer.blender.org/D9165
2020-12-04 08:28:43 +01:00
uint32_t BKE_cryptomatte_hash(const char *name, int name_len);
uint32_t BKE_cryptomatte_object_hash(struct CryptomatteSession *session,
const struct Object *object);
uint32_t BKE_cryptomatte_material_hash(struct CryptomatteSession *session,
const struct Material *material);
uint32_t BKE_cryptomatte_asset_hash(struct CryptomatteSession *session,
const struct Object *object);
EEVEE Cryptomatte Cryptomatte is a standard to efficiently create mattes for compositing. The renderer outputs the required render passes, which can then be used in the compositor to create masks for specified objects. Unlike the Material and Object Index passes, the objects to isolate are selected in compositing, and mattes will be anti-aliased. Cryptomatte was already available in Cycles this patch adds it to the EEVEE render engine. Original specification can be found at https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf **Accurate mode** Following Cycles, there are two accuracy modes. The difference between the two modes is the number of render samples they take into account to create the render passes. When accurate mode is off the number of levels is used. When accuracy mode is active, the number of render samples is used. **Deviation from standard** Cryptomatte specification is based on a path trace approach where samples and coverage are calculated at the same time. In EEVEE a sample is an exact match on top of a prepared depth buffer. Coverage is at that moment always 1. By sampling multiple times the number of surface hits decides the actual surface coverage for a matte per pixel. **Implementation Overview** When drawing to the cryptomatte GPU buffer the depth of the fragment is matched to the active depth buffer. The hashes of each cryptomatte layer is written in the GPU buffer. The exact layout depends on the active cryptomatte layers. The GPU buffer is downloaded and integrated into an accumulation buffer (stored in CPU RAM). The accumulation buffer stores the hashes + weights for a number of levels, layers per pixel. When a hash already exists the weight will be increased. When the hash doesn't exists it will be added to the buffer. After all the samples have been calculated the accumulation buffer is processed. During this phase the total pixel weights of each layer is mapped to be in a range between 0 and 1. The hashes are also sorted (highest weight first). Blender Kernel now has a `BKE_cryptomatte` header that access to common functions for cryptomatte. This will in the future be used by the API. * Alpha blended materials aren't supported. Alpha blended materials support in render passes needs research how to implement it in a maintainable way for any render pass. This is a list of tasks that needs to be done for the same release that this patch lands on (Blender 2.92) * T82571 Add render tests. * T82572 Documentation. * T82573 Store hashes + Object names in the render result header. * T82574 Use threading to increase performance in accumulation and post processing. * T82575 Merge the cycles and EEVEE settings as they are identical. * T82576 Add RNA to extract the cryptomatte hashes to use in python scripts. Reviewed By: Clément Foucault Maniphest Tasks: T81058 Differential Revision: https://developer.blender.org/D9165
2020-12-04 08:28:43 +01:00
float BKE_cryptomatte_hash_to_float(uint32_t cryptomatte_hash);
char *BKE_cryptomatte_entries_to_matte_id(struct NodeCryptomatte *node_storage);
void BKE_cryptomatte_matte_id_to_entries(const struct Main *bmain,
struct NodeCryptomatte *node_storage,
const char *matte_id);
void BKE_cryptomatte_store_metadata(struct CryptomatteSession *session,
struct RenderResult *render_result,
const ViewLayer *view_layer,
eViewLayerCryptomatteFlags cryptomatte_layer,
const char *cryptomatte_layer_name);
EEVEE Cryptomatte Cryptomatte is a standard to efficiently create mattes for compositing. The renderer outputs the required render passes, which can then be used in the compositor to create masks for specified objects. Unlike the Material and Object Index passes, the objects to isolate are selected in compositing, and mattes will be anti-aliased. Cryptomatte was already available in Cycles this patch adds it to the EEVEE render engine. Original specification can be found at https://raw.githubusercontent.com/Psyop/Cryptomatte/master/specification/IDmattes_poster.pdf **Accurate mode** Following Cycles, there are two accuracy modes. The difference between the two modes is the number of render samples they take into account to create the render passes. When accurate mode is off the number of levels is used. When accuracy mode is active, the number of render samples is used. **Deviation from standard** Cryptomatte specification is based on a path trace approach where samples and coverage are calculated at the same time. In EEVEE a sample is an exact match on top of a prepared depth buffer. Coverage is at that moment always 1. By sampling multiple times the number of surface hits decides the actual surface coverage for a matte per pixel. **Implementation Overview** When drawing to the cryptomatte GPU buffer the depth of the fragment is matched to the active depth buffer. The hashes of each cryptomatte layer is written in the GPU buffer. The exact layout depends on the active cryptomatte layers. The GPU buffer is downloaded and integrated into an accumulation buffer (stored in CPU RAM). The accumulation buffer stores the hashes + weights for a number of levels, layers per pixel. When a hash already exists the weight will be increased. When the hash doesn't exists it will be added to the buffer. After all the samples have been calculated the accumulation buffer is processed. During this phase the total pixel weights of each layer is mapped to be in a range between 0 and 1. The hashes are also sorted (highest weight first). Blender Kernel now has a `BKE_cryptomatte` header that access to common functions for cryptomatte. This will in the future be used by the API. * Alpha blended materials aren't supported. Alpha blended materials support in render passes needs research how to implement it in a maintainable way for any render pass. This is a list of tasks that needs to be done for the same release that this patch lands on (Blender 2.92) * T82571 Add render tests. * T82572 Documentation. * T82573 Store hashes + Object names in the render result header. * T82574 Use threading to increase performance in accumulation and post processing. * T82575 Merge the cycles and EEVEE settings as they are identical. * T82576 Add RNA to extract the cryptomatte hashes to use in python scripts. Reviewed By: Clément Foucault Maniphest Tasks: T81058 Differential Revision: https://developer.blender.org/D9165
2020-12-04 08:28:43 +01:00
#ifdef __cplusplus
}
2021-01-13 13:15:22 +11:00
#endif