This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/BLI_mpq3.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

282 lines
6.2 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup bli
*/
#ifdef WITH_GMP
# include <iostream>
# include "BLI_math.h"
# include "BLI_math_mpq.hh"
# include "BLI_span.hh"
namespace blender {
struct mpq3 {
mpq_class x, y, z;
mpq3() = default;
mpq3(const mpq_class *ptr) : x{ptr[0]}, y{ptr[1]}, z{ptr[2]}
{
}
mpq3(const mpq_class (*ptr)[3]) : mpq3((const mpq_class *)ptr)
{
}
explicit mpq3(mpq_class value) : x(value), y(value), z(value)
{
}
explicit mpq3(int value) : x(value), y(value), z(value)
{
}
mpq3(mpq_class x, mpq_class y, mpq_class z) : x{x}, y{y}, z{z}
{
}
operator const mpq_class *() const
{
return &x;
}
operator mpq_class *()
{
return &x;
}
/* Cannot do this exactly in rational arithmetic!
* Approximate by going in and out of doubles.
*/
mpq_class normalize_and_get_length()
{
double dv[3] = {x.get_d(), y.get_d(), z.get_d()};
double len = normalize_v3_db(dv);
this->x = mpq_class(dv[0]);
this->y = mpq_class(dv[1]);
this->z = mpq_class(dv[2]);
return len;
}
mpq3 normalized() const
{
double dv[3] = {x.get_d(), y.get_d(), z.get_d()};
double dr[3];
normalize_v3_v3_db(dr, dv);
return mpq3(mpq_class(dr[0]), mpq_class(dr[1]), mpq_class(dr[2]));
}
/* Cannot do this exactly in rational arithmetic!
* Approximate by going in and out of double.
*/
mpq_class length() const
{
mpq_class lsquared = this->length_squared();
double dsquared = lsquared.get_d();
double d = sqrt(dsquared);
return mpq_class(d);
}
mpq_class length_squared() const
{
return x * x + y * y + z * z;
}
void reflect(const mpq3 &normal)
{
*this = this->reflected(normal);
}
mpq3 reflected(const mpq3 &normal) const
{
mpq3 result;
const mpq_class dot2 = 2 * dot(*this, normal);
result.x = this->x - (dot2 * normal.x);
result.y = this->y - (dot2 * normal.y);
result.z = this->z - (dot2 * normal.z);
return result;
}
static mpq3 safe_divide(const mpq3 &a, const mpq3 &b)
{
mpq3 result;
result.x = (b.x == 0) ? mpq_class(0) : a.x / b.x;
result.y = (b.y == 0) ? mpq_class(0) : a.y / b.y;
result.z = (b.z == 0) ? mpq_class(0) : a.z / b.z;
return result;
}
void invert()
{
x = -x;
y = -y;
z = -z;
}
friend mpq3 operator+(const mpq3 &a, const mpq3 &b)
{
return mpq3(a.x + b.x, a.y + b.y, a.z + b.z);
}
void operator+=(const mpq3 &b)
{
this->x += b.x;
this->y += b.y;
this->z += b.z;
}
friend mpq3 operator-(const mpq3 &a, const mpq3 &b)
{
return mpq3(a.x - b.x, a.y - b.y, a.z - b.z);
}
friend mpq3 operator-(const mpq3 &a)
{
return mpq3(-a.x, -a.y, -a.z);
}
void operator-=(const mpq3 &b)
{
this->x -= b.x;
this->y -= b.y;
this->z -= b.z;
}
void operator*=(mpq_class scalar)
{
this->x *= scalar;
this->y *= scalar;
this->z *= scalar;
}
void operator*=(const mpq3 &other)
{
this->x *= other.x;
this->y *= other.y;
this->z *= other.z;
}
friend mpq3 operator*(const mpq3 &a, const mpq3 &b)
{
return {a.x * b.x, a.y * b.y, a.z * b.z};
}
friend mpq3 operator*(const mpq3 &a, const mpq_class &b)
{
return mpq3(a.x * b, a.y * b, a.z * b);
}
friend mpq3 operator*(const mpq_class &a, const mpq3 &b)
{
return mpq3(a * b.x, a * b.y, a * b.z);
}
friend mpq3 operator/(const mpq3 &a, const mpq_class &b)
{
BLI_assert(b != 0);
return mpq3(a.x / b, a.y / b, a.z / b);
}
friend bool operator==(const mpq3 &a, const mpq3 &b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
friend bool operator!=(const mpq3 &a, const mpq3 &b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
friend std::ostream &operator<<(std::ostream &stream, const mpq3 &v)
{
stream << "(" << v.x << ", " << v.y << ", " << v.z << ")";
return stream;
}
static mpq_class dot(const mpq3 &a, const mpq3 &b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
static mpq3 cross(const mpq3 &a, const mpq3 &b)
{
return mpq3(a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]);
}
static mpq3 cross_high_precision(const mpq3 &a, const mpq3 &b)
{
return cross(a, b);
}
static mpq3 project(const mpq3 &a, const mpq3 &b)
{
const mpq_class mul = mpq3::dot(a, b) / mpq3::dot(b, b);
return mpq3(mul * b[0], mul * b[1], mul * b[2]);
}
static mpq_class distance(const mpq3 &a, const mpq3 &b)
{
mpq3 diff(a.x - b.x, a.y - b.y, a.z - b.z);
return diff.length();
}
static mpq_class distance_squared(const mpq3 &a, const mpq3 &b)
{
mpq3 diff(a.x - b.x, a.y - b.y, a.z - b.z);
return mpq3::dot(diff, diff);
}
static mpq3 interpolate(const mpq3 &a, const mpq3 &b, mpq_class t)
{
mpq_class s = 1 - t;
return mpq3(a.x * s + b.x * t, a.y * s + b.y * t, a.z * s + b.z * t);
}
static mpq3 abs(const mpq3 &a)
{
mpq_class abs_x = (a.x >= 0) ? a.x : -a.x;
mpq_class abs_y = (a.y >= 0) ? a.y : -a.y;
mpq_class abs_z = (a.z >= 0) ? a.z : -a.z;
return mpq3(abs_x, abs_y, abs_z);
}
static int dominant_axis(const mpq3 &a)
{
mpq_class x = (a.x >= 0) ? a.x : -a.x;
mpq_class y = (a.y >= 0) ? a.y : -a.y;
mpq_class z = (a.z >= 0) ? a.z : -a.z;
return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
}
static mpq3 cross_poly(Span<mpq3> poly);
/** There is a sensible use for hashing on exact arithmetic types. */
uint64_t hash() const;
};
uint64_t hash_mpq_class(const mpq_class &value);
} // namespace blender
#endif /* WITH_GMP */