This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/makesrna/intern/makesrna.c

5190 lines
155 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup RNA
2011-02-27 20:20:01 +00:00
*/
#include <errno.h>
#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
2020-11-06 15:29:25 +11:00
#include "BLI_string.h"
#include "BLI_system.h" /* for 'BLI_system_backtrace' stub. */
2013-03-07 02:44:55 +00:00
#include "BLI_utildefines.h"
#include "RNA_define.h"
#include "RNA_enum_types.h"
#include "RNA_types.h"
#include "rna_internal.h"
#ifdef _WIN32
# ifndef snprintf
# define snprintf _snprintf
# endif
#endif
#include "CLG_log.h"
static CLG_LogRef LOG = {"makesrna"};
/**
* Variable to control debug output of makesrna.
* debugSRNA:
2018-11-14 12:53:15 +11:00
* - 0 = no output, except errors
* - 1 = detail actions
*/
static int debugSRNA = 0;
/* stub for BLI_abort() */
#ifndef NDEBUG
void BLI_system_backtrace(FILE *fp)
{
(void)fp;
}
#endif
/* Replace if different */
#define TMP_EXT ".tmp"
/* copied from BLI_file_older */
#include <sys/stat.h>
static int file_older(const char *file1, const char *file2)
{
struct stat st1, st2;
if (debugSRNA > 0) {
printf("compare: %s %s\n", file1, file2);
}
if (stat(file1, &st1)) {
return 0;
}
if (stat(file2, &st2)) {
return 0;
}
return (st1.st_mtime < st2.st_mtime);
}
static const char *makesrna_path = NULL;
/* forward declarations */
static void rna_generate_static_parameter_prototypes(FILE *f,
StructRNA *srna,
FunctionDefRNA *dfunc,
const char *name_override,
int close_prototype);
/* helpers */
2012-11-09 09:33:28 +00:00
#define WRITE_COMMA \
{ \
if (!first) { \
fprintf(f, ", "); \
} \
first = 0; \
} \
(void)0
2012-11-09 09:33:28 +00:00
#define WRITE_PARAM(param) \
{ \
WRITE_COMMA; \
fprintf(f, param); \
} \
(void)0
static int replace_if_different(const char *tmpfile, const char *dep_files[])
{
/* return 0; */ /* use for testing had edited rna */
#define REN_IF_DIFF \
{ \
FILE *file_test = fopen(orgfile, "rb"); \
if (file_test) { \
fclose(file_test); \
if (fp_org) { \
fclose(fp_org); \
} \
if (fp_new) { \
fclose(fp_new); \
} \
if (remove(orgfile) != 0) { \
CLOG_ERROR(&LOG, "remove error (%s): \"%s\"", strerror(errno), orgfile); \
return -1; \
} \
} \
} \
if (rename(tmpfile, orgfile) != 0) { \
CLOG_ERROR(&LOG, "rename error (%s): \"%s\" -> \"%s\"", strerror(errno), tmpfile, orgfile); \
return -1; \
} \
remove(tmpfile); \
return 1
/* end REN_IF_DIFF */
FILE *fp_new = NULL, *fp_org = NULL;
int len_new, len_org;
char *arr_new, *arr_org;
int cmp;
char orgfile[4096];
strcpy(orgfile, tmpfile);
orgfile[strlen(orgfile) - strlen(TMP_EXT)] = '\0'; /* strip '.tmp' */
fp_org = fopen(orgfile, "rb");
if (fp_org == NULL) {
REN_IF_DIFF;
}
/* XXX, trick to work around dependency problem
* assumes dep_files is in the same dir as makesrna.c, which is true for now. */
if (1) {
/* first check if makesrna.c is newer than generated files
* for development on makesrna.c you may want to disable this */
if (file_older(orgfile, __FILE__)) {
REN_IF_DIFF;
}
if (file_older(orgfile, makesrna_path)) {
REN_IF_DIFF;
}
/* now check if any files we depend on are newer than any generated files */
if (dep_files) {
int pass;
for (pass = 0; dep_files[pass]; pass++) {
const char from_path[4096] = __FILE__;
char *p1, *p2;
/* dir only */
p1 = strrchr(from_path, '/');
p2 = strrchr(from_path, '\\');
strcpy((p1 > p2 ? p1 : p2) + 1, dep_files[pass]);
/* account for build deps, if makesrna.c (this file) is newer */
if (file_older(orgfile, from_path)) {
REN_IF_DIFF;
}
}
}
}
/* XXX end dep trick */
fp_new = fopen(tmpfile, "rb");
if (fp_new == NULL) {
/* shouldn't happen, just to be safe */
CLOG_ERROR(&LOG, "open error: \"%s\"", tmpfile);
fclose(fp_org);
return -1;
}
fseek(fp_new, 0L, SEEK_END);
len_new = ftell(fp_new);
fseek(fp_new, 0L, SEEK_SET);
fseek(fp_org, 0L, SEEK_END);
len_org = ftell(fp_org);
fseek(fp_org, 0L, SEEK_SET);
if (len_new != len_org) {
fclose(fp_new);
fp_new = NULL;
fclose(fp_org);
fp_org = NULL;
REN_IF_DIFF;
}
/* now compare the files... */
arr_new = MEM_mallocN(sizeof(char) * len_new, "rna_cmp_file_new");
arr_org = MEM_mallocN(sizeof(char) * len_org, "rna_cmp_file_org");
if (fread(arr_new, sizeof(char), len_new, fp_new) != len_new) {
CLOG_ERROR(&LOG, "unable to read file %s for comparison.", tmpfile);
}
if (fread(arr_org, sizeof(char), len_org, fp_org) != len_org) {
CLOG_ERROR(&LOG, "unable to read file %s for comparison.", orgfile);
}
fclose(fp_new);
fp_new = NULL;
fclose(fp_org);
fp_org = NULL;
cmp = memcmp(arr_new, arr_org, len_new);
MEM_freeN(arr_new);
MEM_freeN(arr_org);
if (cmp) {
REN_IF_DIFF;
}
remove(tmpfile);
return 0;
#undef REN_IF_DIFF
}
2011-05-18 12:56:58 +00:00
/* Helper to solve keyword problems with C/C++ */
2011-05-18 12:56:58 +00:00
static const char *rna_safe_id(const char *id)
{
if (STREQ(id, "default")) {
return "default_value";
}
if (STREQ(id, "operator")) {
return "operator_value";
}
2020-11-07 18:24:56 +05:30
if (STREQ(id, "new")) {
return "create";
}
2020-11-07 18:24:56 +05:30
if (STREQ(id, "co_return")) {
/* MSVC2015, C++ uses for coroutines */
return "coord_return";
}
return id;
2011-05-18 12:56:58 +00:00
}
/* Sorting */
static int cmp_struct(const void *a, const void *b)
{
const StructRNA *structa = *(const StructRNA **)a;
const StructRNA *structb = *(const StructRNA **)b;
return strcmp(structa->identifier, structb->identifier);
}
static int cmp_property(const void *a, const void *b)
{
const PropertyRNA *propa = *(const PropertyRNA **)a;
const PropertyRNA *propb = *(const PropertyRNA **)b;
if (STREQ(propa->identifier, "rna_type")) {
return -1;
}
if (STREQ(propb->identifier, "rna_type")) {
return 1;
}
if (STREQ(propa->identifier, "name")) {
return -1;
}
if (STREQ(propb->identifier, "name")) {
return 1;
}
return strcmp(propa->name, propb->name);
}
static int cmp_def_struct(const void *a, const void *b)
{
const StructDefRNA *dsa = *(const StructDefRNA **)a;
const StructDefRNA *dsb = *(const StructDefRNA **)b;
return cmp_struct(&dsa->srna, &dsb->srna);
}
static int cmp_def_property(const void *a, const void *b)
{
const PropertyDefRNA *dpa = *(const PropertyDefRNA **)a;
const PropertyDefRNA *dpb = *(const PropertyDefRNA **)b;
return cmp_property(&dpa->prop, &dpb->prop);
}
static void rna_sortlist(ListBase *listbase, int (*cmp)(const void *, const void *))
{
Link *link;
void **array;
int a, size;
2018-06-09 14:40:09 +02:00
if (listbase->first == listbase->last) {
return;
}
for (size = 0, link = listbase->first; link; link = link->next) {
size++;
}
array = MEM_mallocN(sizeof(void *) * size, "rna_sortlist");
for (a = 0, link = listbase->first; link; link = link->next, a++) {
array[a] = link;
}
qsort(array, size, sizeof(void *), cmp);
listbase->first = listbase->last = NULL;
for (a = 0; a < size; a++) {
link = array[a];
link->next = link->prev = NULL;
rna_addtail(listbase, link);
}
MEM_freeN(array);
}
/* Preprocessing */
static void rna_print_c_string(FILE *f, const char *str)
{
static const char *escape[] = {
"\''", "\"\"", "\??", "\\\\", "\aa", "\bb", "\ff", "\nn", "\rr", "\tt", "\vv", NULL};
int i, j;
if (!str) {
fprintf(f, "NULL");
return;
}
fprintf(f, "\"");
for (i = 0; str[i]; i++) {
for (j = 0; escape[j]; j++) {
if (str[i] == escape[j][0]) {
break;
}
}
if (escape[j]) {
fprintf(f, "\\%c", escape[j][1]);
}
else {
fprintf(f, "%c", str[i]);
}
}
fprintf(f, "\"");
}
static void rna_print_data_get(FILE *f, PropertyDefRNA *dp)
{
if (dp->dnastructfromname && dp->dnastructfromprop) {
fprintf(f,
" %s *data = (%s *)(((%s *)ptr->data)->%s);\n",
dp->dnastructname,
dp->dnastructname,
dp->dnastructfromname,
dp->dnastructfromprop);
}
else {
fprintf(f, " %s *data = (%s *)(ptr->data);\n", dp->dnastructname, dp->dnastructname);
}
}
static void rna_print_id_get(FILE *f, PropertyDefRNA *UNUSED(dp))
{
fprintf(f, " ID *id = ptr->owner_id;\n");
}
static void rna_construct_function_name(
char *buffer, int size, const char *structname, const char *propname, const char *type)
{
snprintf(buffer, size, "%s_%s_%s", structname, propname, type);
}
static void rna_construct_wrapper_function_name(
char *buffer, int size, const char *structname, const char *propname, const char *type)
{
if (type == NULL || type[0] == '\0') {
snprintf(buffer, size, "%s_%s", structname, propname);
}
else {
snprintf(buffer, size, "%s_%s_%s", structname, propname, type);
}
}
void *rna_alloc_from_buffer(const char *buffer, int buffer_len)
{
AllocDefRNA *alloc = MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA");
alloc->mem = MEM_mallocN(buffer_len, __func__);
memcpy(alloc->mem, buffer, buffer_len);
rna_addtail(&DefRNA.allocs, alloc);
return alloc->mem;
}
void *rna_calloc(int buffer_len)
{
AllocDefRNA *alloc = MEM_callocN(sizeof(AllocDefRNA), "AllocDefRNA");
alloc->mem = MEM_callocN(buffer_len, __func__);
rna_addtail(&DefRNA.allocs, alloc);
return alloc->mem;
}
static char *rna_alloc_function_name(const char *structname,
const char *propname,
const char *type)
{
char buffer[2048];
rna_construct_function_name(buffer, sizeof(buffer), structname, propname, type);
return rna_alloc_from_buffer(buffer, strlen(buffer) + 1);
}
static StructRNA *rna_find_struct(const char *identifier)
{
StructDefRNA *ds;
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (STREQ(ds->srna->identifier, identifier)) {
return ds->srna;
}
}
return NULL;
}
static const char *rna_find_type(const char *type)
{
StructDefRNA *ds;
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (ds->dnaname && STREQ(ds->dnaname, type)) {
return ds->srna->identifier;
}
}
return NULL;
}
static const char *rna_find_dna_type(const char *type)
{
StructDefRNA *ds;
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (STREQ(ds->srna->identifier, type)) {
return ds->dnaname;
}
}
return NULL;
}
static const char *rna_type_type_name(PropertyRNA *prop)
{
switch (prop->type) {
case PROP_BOOLEAN:
return "bool";
case PROP_INT:
return "int";
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
if (eprop->native_enum_type) {
return eprop->native_enum_type;
}
return "int";
}
case PROP_FLOAT:
return "float";
case PROP_STRING:
if (prop->flag & PROP_THICK_WRAP) {
return "char *";
}
else {
return "const char *";
}
default:
return NULL;
}
}
static const char *rna_type_type(PropertyRNA *prop)
{
const char *type;
type = rna_type_type_name(prop);
if (type) {
return type;
}
return "PointerRNA";
}
static const char *rna_type_struct(PropertyRNA *prop)
{
const char *type;
type = rna_type_type_name(prop);
if (type) {
return "";
}
return "struct ";
}
static const char *rna_parameter_type_name(PropertyRNA *parm)
{
const char *type;
type = rna_type_type_name(parm);
if (type) {
return type;
}
switch (parm->type) {
case PROP_POINTER: {
PointerPropertyRNA *pparm = (PointerPropertyRNA *)parm;
if (parm->flag_parameter & PARM_RNAPTR) {
return "PointerRNA";
}
return rna_find_dna_type((const char *)pparm->type);
}
case PROP_COLLECTION: {
return "CollectionListBase";
}
default:
return "<error, no type specified>";
}
}
static int rna_enum_bitmask(PropertyRNA *prop)
{
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
int a, mask = 0;
if (eprop->item) {
for (a = 0; a < eprop->totitem; a++) {
if (eprop->item[a].identifier[0]) {
mask |= eprop->item[a].value;
}
}
}
2018-06-09 14:40:09 +02:00
return mask;
}
static int rna_color_quantize(PropertyRNA *prop, PropertyDefRNA *dp)
{
return ((prop->type == PROP_FLOAT) && (ELEM(prop->subtype, PROP_COLOR, PROP_COLOR_GAMMA)) &&
(IS_DNATYPE_FLOAT_COMPAT(dp->dnatype) == 0));
}
static const char *rna_function_string(const void *func)
2009-01-17 15:28:34 +00:00
{
return (func) ? (const char *)func : "NULL";
2009-01-17 15:28:34 +00:00
}
static void rna_float_print(FILE *f, float num)
{
if (num == -FLT_MAX) {
fprintf(f, "-FLT_MAX");
}
else if (num == FLT_MAX) {
fprintf(f, "FLT_MAX");
}
2020-08-19 12:04:36 +02:00
else if ((fabsf(num) < (float)INT64_MAX) && ((int64_t)num == num)) {
fprintf(f, "%.1ff", num);
}
else {
fprintf(f, "%.10ff", num);
}
2009-01-17 15:28:34 +00:00
}
static void rna_int_print(FILE *f, int64_t num)
2009-01-17 15:28:34 +00:00
{
if (num == INT_MIN) {
fprintf(f, "INT_MIN");
}
else if (num == INT_MAX) {
fprintf(f, "INT_MAX");
}
else if (num == INT64_MIN) {
fprintf(f, "INT64_MIN");
}
else if (num == INT64_MAX) {
fprintf(f, "INT64_MAX");
}
else if (num < INT_MIN || num > INT_MAX) {
fprintf(f, "%" PRId64 "LL", num);
}
else {
fprintf(f, "%d", (int)num);
}
2009-01-17 15:28:34 +00:00
}
static char *rna_def_property_get_func(
FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc)
{
char *func;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier);
DefRNA.error = true;
return NULL;
}
/* typecheck, */
if (dp->dnatype && *dp->dnatype) {
if (prop->type == PROP_FLOAT) {
if (IS_DNATYPE_FLOAT_COMPAT(dp->dnatype) == 0) {
2019-09-12 18:58:43 +10:00
/* Colors are an exception. these get translated. */
if (prop->subtype != PROP_COLOR_GAMMA) {
CLOG_ERROR(&LOG,
"%s.%s is a '%s' but wrapped as type '%s'.",
srna->identifier,
prop->identifier,
dp->dnatype,
RNA_property_typename(prop->type));
DefRNA.error = true;
return NULL;
}
}
}
else if (prop->type == PROP_BOOLEAN) {
if (IS_DNATYPE_BOOLEAN_COMPAT(dp->dnatype) == 0) {
CLOG_ERROR(&LOG,
"%s.%s is a '%s' but wrapped as type '%s'.",
srna->identifier,
prop->identifier,
dp->dnatype,
RNA_property_typename(prop->type));
DefRNA.error = true;
return NULL;
}
}
2020-11-06 12:30:59 +11:00
else if (ELEM(prop->type, PROP_INT, PROP_ENUM)) {
if (IS_DNATYPE_INT_COMPAT(dp->dnatype) == 0) {
CLOG_ERROR(&LOG,
"%s.%s is a '%s' but wrapped as type '%s'.",
srna->identifier,
prop->identifier,
dp->dnatype,
RNA_property_typename(prop->type));
DefRNA.error = true;
return NULL;
}
}
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get");
switch (prop->type) {
case PROP_STRING: {
StringPropertyRNA *sprop = (StringPropertyRNA *)prop;
fprintf(f, "void %s(PointerRNA *ptr, char *value)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
const PropertySubType subtype = prop->subtype;
const char *string_copy_func = (subtype == PROP_FILEPATH || subtype == PROP_DIRPATH ||
subtype == PROP_FILENAME || subtype == PROP_BYTESTRING) ?
"BLI_strncpy" :
"BLI_strncpy_utf8";
rna_print_data_get(f, dp);
if (!(prop->flag & PROP_NEVER_NULL)) {
fprintf(f, " if (data->%s == NULL) {\n", dp->dnaname);
fprintf(f, " *value = '\\0';\n");
fprintf(f, " return;\n");
fprintf(f, " }\n");
}
if (sprop->maxlength) {
fprintf(f,
" %s(value, data->%s, %d);\n",
string_copy_func,
dp->dnaname,
sprop->maxlength);
}
else {
fprintf(f,
" %s(value, data->%s, sizeof(data->%s));\n",
string_copy_func,
dp->dnaname,
dp->dnaname);
}
}
fprintf(f, "}\n\n");
break;
}
case PROP_POINTER: {
fprintf(f, "PointerRNA %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop;
rna_print_data_get(f, dp);
if (dp->dnapointerlevel == 0) {
fprintf(f,
" return rna_pointer_inherit_refine(ptr, &RNA_%s, &data->%s);\n",
(const char *)pprop->type,
dp->dnaname);
}
else {
fprintf(f,
" return rna_pointer_inherit_refine(ptr, &RNA_%s, data->%s);\n",
(const char *)pprop->type,
dp->dnaname);
}
}
fprintf(f, "}\n\n");
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop;
fprintf(f, "static PointerRNA %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
2020-11-06 15:29:25 +11:00
if (STR_ELEM(manualfunc,
"rna_iterator_listbase_get",
"rna_iterator_array_get",
"rna_iterator_array_dereference_get")) {
fprintf(f,
" return rna_pointer_inherit_refine(&iter->parent, &RNA_%s, %s(iter));\n",
(cprop->item_type) ? (const char *)cprop->item_type : "UnknownType",
manualfunc);
}
else {
fprintf(f, " return %s(iter);\n", manualfunc);
}
}
fprintf(f, "}\n\n");
break;
}
default:
if (prop->arraydimension) {
if (prop->flag & PROP_DYNAMIC) {
fprintf(f, "void %s(PointerRNA *ptr, %s values[])\n", func, rna_type_type(prop));
}
else {
fprintf(f,
"void %s(PointerRNA *ptr, %s values[%u])\n",
func,
rna_type_type(prop),
prop->totarraylength);
}
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, values);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (prop->flag & PROP_DYNAMIC) {
char *lenfunc = rna_alloc_function_name(
srna->identifier, rna_safe_id(prop->identifier), "get_length");
fprintf(f, " unsigned int arraylen[RNA_MAX_ARRAY_DIMENSION];\n");
fprintf(f, " unsigned int i;\n");
fprintf(f, " unsigned int len = %s(ptr, arraylen);\n\n", lenfunc);
fprintf(f, " for (i = 0; i < len; i++) {\n");
MEM_freeN(lenfunc);
}
else {
fprintf(f, " unsigned int i;\n\n");
fprintf(f, " for (i = 0; i < %u; i++) {\n", prop->totarraylength);
}
if (dp->dnaarraylength == 1) {
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f,
" values[i] = %s((data->%s & (",
(dp->booleannegative) ? "!" : "",
dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, " << i)) != 0);\n");
}
else {
fprintf(f,
" values[i] = (%s)%s((&data->%s)[i]);\n",
rna_type_type(prop),
(dp->booleannegative) ? "!" : "",
dp->dnaname);
}
}
else {
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f,
" values[i] = %s((data->%s[i] & ",
(dp->booleannegative) ? "!" : "",
dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ") != 0);\n");
}
else if (rna_color_quantize(prop, dp)) {
fprintf(f,
" values[i] = (%s)(data->%s[i] * (1.0f / 255.0f));\n",
rna_type_type(prop),
dp->dnaname);
}
else if (dp->dnatype) {
fprintf(f,
" values[i] = (%s)%s(((%s *)data->%s)[i]);\n",
rna_type_type(prop),
(dp->booleannegative) ? "!" : "",
dp->dnatype,
dp->dnaname);
}
else {
fprintf(f,
" values[i] = (%s)%s((data->%s)[i]);\n",
rna_type_type(prop),
(dp->booleannegative) ? "!" : "",
dp->dnaname);
}
}
fprintf(f, " }\n");
}
fprintf(f, "}\n\n");
}
else {
fprintf(f, "%s %s(PointerRNA *ptr)\n", rna_type_type(prop), func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(
f, " return %s(((data->%s) & ", (dp->booleannegative) ? "!" : "", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, ") != 0);\n");
}
else if (prop->type == PROP_ENUM && dp->enumbitflags) {
fprintf(f, " return ((data->%s) & ", dp->dnaname);
rna_int_print(f, rna_enum_bitmask(prop));
fprintf(f, ");\n");
}
else {
fprintf(f,
" return (%s)%s(data->%s);\n",
rna_type_type(prop),
(dp->booleannegative) ? "!" : "",
dp->dnaname);
}
}
fprintf(f, "}\n\n");
}
break;
}
return func;
}
/* defined min/max variables to be used by rna_clamp_value() */
static void rna_clamp_value_range(FILE *f, PropertyRNA *prop)
{
if (prop->type == PROP_FLOAT) {
FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop;
if (fprop->range) {
fprintf(f,
" float prop_clamp_min = -FLT_MAX, prop_clamp_max = FLT_MAX, prop_soft_min, "
"prop_soft_max;\n");
fprintf(f,
" %s(ptr, &prop_clamp_min, &prop_clamp_max, &prop_soft_min, &prop_soft_max);\n",
rna_function_string(fprop->range));
}
}
else if (prop->type == PROP_INT) {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
if (iprop->range) {
fprintf(f,
" int prop_clamp_min = INT_MIN, prop_clamp_max = INT_MAX, prop_soft_min, "
"prop_soft_max;\n");
fprintf(f,
" %s(ptr, &prop_clamp_min, &prop_clamp_max, &prop_soft_min, &prop_soft_max);\n",
rna_function_string(iprop->range));
}
}
}
#ifdef USE_RNA_RANGE_CHECK
static void rna_clamp_value_range_check(FILE *f,
PropertyRNA *prop,
const char *dnaname_prefix,
const char *dnaname)
{
if (prop->type == PROP_INT) {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
fprintf(f,
" { BLI_STATIC_ASSERT("
"(TYPEOF_MAX(%s%s) >= %d) && "
"(TYPEOF_MIN(%s%s) <= %d), "
"\"invalid limits\"); }\n",
dnaname_prefix,
dnaname,
iprop->hardmax,
dnaname_prefix,
dnaname,
iprop->hardmin);
}
}
#endif /* USE_RNA_RANGE_CHECK */
static void rna_clamp_value(FILE *f, PropertyRNA *prop, int array)
{
if (prop->type == PROP_INT) {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
if (iprop->hardmin != INT_MIN || iprop->hardmax != INT_MAX || iprop->range) {
if (array) {
fprintf(f, "CLAMPIS(values[i], ");
}
else {
fprintf(f, "CLAMPIS(value, ");
}
if (iprop->range) {
fprintf(f, "prop_clamp_min, prop_clamp_max);");
}
else {
rna_int_print(f, iprop->hardmin);
fprintf(f, ", ");
rna_int_print(f, iprop->hardmax);
fprintf(f, ");\n");
}
return;
}
}
else if (prop->type == PROP_FLOAT) {
FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop;
if (fprop->hardmin != -FLT_MAX || fprop->hardmax != FLT_MAX || fprop->range) {
if (array) {
fprintf(f, "CLAMPIS(values[i], ");
}
else {
fprintf(f, "CLAMPIS(value, ");
}
if (fprop->range) {
fprintf(f, "prop_clamp_min, prop_clamp_max);");
}
else {
rna_float_print(f, fprop->hardmin);
fprintf(f, ", ");
rna_float_print(f, fprop->hardmax);
fprintf(f, ");\n");
}
return;
}
}
if (array) {
fprintf(f, "values[i];\n");
}
else {
fprintf(f, "value;\n");
}
}
static char *rna_def_property_set_func(
FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc)
{
char *func;
if (!(prop->flag & PROP_EDITABLE)) {
return NULL;
}
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
if (prop->flag & PROP_EDITABLE) {
CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier);
DefRNA.error = true;
}
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "set");
switch (prop->type) {
case PROP_STRING: {
StringPropertyRNA *sprop = (StringPropertyRNA *)prop;
fprintf(f, "void %s(PointerRNA *ptr, const char *value)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
const PropertySubType subtype = prop->subtype;
const char *string_copy_func = (subtype == PROP_FILEPATH || subtype == PROP_DIRPATH ||
subtype == PROP_FILENAME || subtype == PROP_BYTESTRING) ?
"BLI_strncpy" :
"BLI_strncpy_utf8";
rna_print_data_get(f, dp);
if (!(prop->flag & PROP_NEVER_NULL)) {
fprintf(f, " if (data->%s == NULL) {\n", dp->dnaname);
fprintf(f, " return;\n");
fprintf(f, " }\n");
}
if (sprop->maxlength) {
fprintf(f,
" %s(data->%s, value, %d);\n",
string_copy_func,
dp->dnaname,
sprop->maxlength);
}
else {
fprintf(f,
" %s(data->%s, value, sizeof(data->%s));\n",
string_copy_func,
dp->dnaname,
dp->dnaname);
}
}
fprintf(f, "}\n\n");
break;
}
case PROP_POINTER: {
fprintf(f, "void %s(PointerRNA *ptr, PointerRNA value, struct ReportList *reports)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, value, reports);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (prop->flag & PROP_ID_SELF_CHECK) {
rna_print_id_get(f, dp);
fprintf(f, " if (id == value.data) {\n");
fprintf(f, " return;\n");
fprintf(f, " }\n");
}
if (prop->flag & PROP_ID_REFCOUNT) {
fprintf(f, "\n if (data->%s) {\n", dp->dnaname);
fprintf(f, " id_us_min((ID *)data->%s);\n", dp->dnaname);
fprintf(f, " }\n");
fprintf(f, " if (value.data) {\n");
fprintf(f, " id_us_plus((ID *)value.data);\n");
fprintf(f, " }\n");
}
else {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop;
StructRNA *type = (pprop->type) ? rna_find_struct((const char *)pprop->type) : NULL;
if (type && (type->flag & STRUCT_ID)) {
fprintf(f, " if (value.data) {\n");
fprintf(f, " id_lib_extern((ID *)value.data);\n");
fprintf(f, " }\n");
}
}
fprintf(f, " data->%s = value.data;\n", dp->dnaname);
}
fprintf(f, "}\n\n");
break;
}
default:
if (prop->arraydimension) {
if (prop->flag & PROP_DYNAMIC) {
fprintf(f, "void %s(PointerRNA *ptr, const %s values[])\n", func, rna_type_type(prop));
}
else {
fprintf(f,
"void %s(PointerRNA *ptr, const %s values[%u])\n",
func,
rna_type_type(prop),
prop->totarraylength);
}
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, values);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (prop->flag & PROP_DYNAMIC) {
char *lenfunc = rna_alloc_function_name(
srna->identifier, rna_safe_id(prop->identifier), "set_length");
fprintf(f, " unsigned int i, arraylen[RNA_MAX_ARRAY_DIMENSION];\n");
fprintf(f, " unsigned int len = %s(ptr, arraylen);\n\n", lenfunc);
rna_clamp_value_range(f, prop);
fprintf(f, " for (i = 0; i < len; i++) {\n");
MEM_freeN(lenfunc);
}
else {
fprintf(f, " unsigned int i;\n\n");
rna_clamp_value_range(f, prop);
fprintf(f, " for (i = 0; i < %u; i++) {\n", prop->totarraylength);
}
if (dp->dnaarraylength == 1) {
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f,
" if (%svalues[i]) { data->%s |= (",
(dp->booleannegative) ? "!" : "",
dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, " << i); }\n");
fprintf(f, " else { data->%s &= ~(", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, " << i); }\n");
}
else {
fprintf(
f, " (&data->%s)[i] = %s", dp->dnaname, (dp->booleannegative) ? "!" : "");
rna_clamp_value(f, prop, 1);
}
}
else {
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f,
" if (%svalues[i]) { data->%s[i] |= ",
(dp->booleannegative) ? "!" : "",
dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, "; }\n");
fprintf(f, " else { data->%s[i] &= ~", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, "; }\n");
}
else if (rna_color_quantize(prop, dp)) {
fprintf(
f, " data->%s[i] = unit_float_to_uchar_clamp(values[i]);\n", dp->dnaname);
}
else {
if (dp->dnatype) {
fprintf(f,
" ((%s *)data->%s)[i] = %s",
dp->dnatype,
dp->dnaname,
(dp->booleannegative) ? "!" : "");
}
else {
fprintf(f,
" (data->%s)[i] = %s",
dp->dnaname,
(dp->booleannegative) ? "!" : "");
}
rna_clamp_value(f, prop, 1);
}
}
fprintf(f, " }\n");
}
#ifdef USE_RNA_RANGE_CHECK
if (dp->dnaname && manualfunc == NULL) {
if (dp->dnaarraylength == 1) {
rna_clamp_value_range_check(f, prop, "data->", dp->dnaname);
}
else {
rna_clamp_value_range_check(f, prop, "*data->", dp->dnaname);
}
}
#endif
fprintf(f, "}\n\n");
}
else {
fprintf(f, "void %s(PointerRNA *ptr, %s value)\n", func, rna_type_type(prop));
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(ptr, value);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (prop->type == PROP_BOOLEAN && dp->booleanbit) {
fprintf(f,
" if (%svalue) { data->%s |= ",
(dp->booleannegative) ? "!" : "",
dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, "; }\n");
fprintf(f, " else { data->%s &= ~", dp->dnaname);
rna_int_print(f, dp->booleanbit);
fprintf(f, "; }\n");
}
else if (prop->type == PROP_ENUM && dp->enumbitflags) {
fprintf(f, " data->%s &= ~", dp->dnaname);
rna_int_print(f, rna_enum_bitmask(prop));
fprintf(f, ";\n");
fprintf(f, " data->%s |= value;\n", dp->dnaname);
}
else {
rna_clamp_value_range(f, prop);
fprintf(f, " data->%s = %s", dp->dnaname, (dp->booleannegative) ? "!" : "");
rna_clamp_value(f, prop, 0);
}
}
#ifdef USE_RNA_RANGE_CHECK
if (dp->dnaname && manualfunc == NULL) {
rna_clamp_value_range_check(f, prop, "data->", dp->dnaname);
}
#endif
fprintf(f, "}\n\n");
}
break;
}
return func;
}
static char *rna_def_property_length_func(
FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc)
{
char *func = NULL;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (prop->type == PROP_STRING) {
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier);
DefRNA.error = true;
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length");
fprintf(f, "int %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
rna_print_data_get(f, dp);
if (!(prop->flag & PROP_NEVER_NULL)) {
fprintf(f, " if (data->%s == NULL) { return 0; }\n", dp->dnaname);
}
fprintf(f, " return strlen(data->%s);\n", dp->dnaname);
}
fprintf(f, "}\n\n");
}
else if (prop->type == PROP_COLLECTION) {
if (!manualfunc) {
if (prop->type == PROP_COLLECTION &&
(!(dp->dnalengthname || dp->dnalengthfixed) || !dp->dnaname)) {
CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier);
DefRNA.error = true;
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "length");
fprintf(f, "int %s(PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " return %s(ptr);\n", manualfunc);
}
else {
if (dp->dnaarraylength <= 1 || dp->dnalengthname) {
rna_print_data_get(f, dp);
}
if (dp->dnaarraylength > 1) {
fprintf(f, " return ");
}
else {
fprintf(f, " return (data->%s == NULL) ? 0 : ", dp->dnaname);
}
if (dp->dnalengthname) {
fprintf(f, "data->%s;\n", dp->dnalengthname);
}
else {
fprintf(f, "%d;\n", dp->dnalengthfixed);
}
}
fprintf(f, "}\n\n");
}
return func;
}
static char *rna_def_property_begin_func(
FILE *f, StructRNA *srna, PropertyRNA *prop, PropertyDefRNA *dp, const char *manualfunc)
{
char *func, *getfunc;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
CLOG_ERROR(&LOG, "%s.%s has no valid dna info.", srna->identifier, prop->identifier);
DefRNA.error = true;
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "begin");
fprintf(f, "void %s(CollectionPropertyIterator *iter, PointerRNA *ptr)\n", func);
fprintf(f, "{\n");
if (!manualfunc) {
rna_print_data_get(f, dp);
}
fprintf(f, "\n memset(iter, 0, sizeof(*iter));\n");
fprintf(f, " iter->parent = *ptr;\n");
fprintf(f, " iter->prop = (PropertyRNA *)&rna_%s_%s;\n", srna->identifier, prop->identifier);
if (dp->dnalengthname || dp->dnalengthfixed) {
if (manualfunc) {
fprintf(f, "\n %s(iter, ptr);\n", manualfunc);
}
else {
if (dp->dnalengthname) {
fprintf(f,
"\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), data->%s, 0, "
"NULL);\n",
dp->dnaname,
dp->dnaname,
dp->dnalengthname);
}
else {
fprintf(
f,
"\n rna_iterator_array_begin(iter, data->%s, sizeof(data->%s[0]), %d, 0, NULL);\n",
dp->dnaname,
dp->dnaname,
dp->dnalengthfixed);
}
}
}
else {
if (manualfunc) {
fprintf(f, "\n %s(iter, ptr);\n", manualfunc);
}
else if (dp->dnapointerlevel == 0) {
fprintf(f, "\n rna_iterator_listbase_begin(iter, &data->%s, NULL);\n", dp->dnaname);
}
else {
fprintf(f, "\n rna_iterator_listbase_begin(iter, data->%s, NULL);\n", dp->dnaname);
}
}
getfunc = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get");
fprintf(f, "\n if (iter->valid) {\n");
fprintf(f, " iter->ptr = %s(iter);", getfunc);
fprintf(f, "\n }\n");
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_lookup_int_func(FILE *f,
StructRNA *srna,
PropertyRNA *prop,
PropertyDefRNA *dp,
const char *manualfunc,
const char *nextfunc)
{
/* note on indices, this is for external functions and ignores skipped values.
* so the index can only be checked against the length when there is no 'skip' function. */
char *func;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
return NULL;
}
/* only supported in case of standard next functions */
if (STREQ(nextfunc, "rna_iterator_array_next")) {
}
else if (STREQ(nextfunc, "rna_iterator_listbase_next")) {
}
else {
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "lookup_int");
fprintf(f, "int %s(PointerRNA *ptr, int index, PointerRNA *r_ptr)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, "\n return %s(ptr, index, r_ptr);\n", manualfunc);
fprintf(f, "}\n\n");
return func;
}
fprintf(f, " int found = 0;\n");
fprintf(f, " CollectionPropertyIterator iter;\n\n");
fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, rna_safe_id(prop->identifier));
fprintf(f, " if (iter.valid) {\n");
if (STREQ(nextfunc, "rna_iterator_array_next")) {
fprintf(f, " ArrayIterator *internal = &iter.internal.array;\n");
fprintf(f, " if (index < 0 || index >= internal->length) {\n");
fprintf(f, "#ifdef __GNUC__\n");
fprintf(f,
" printf(\"Array iterator out of range: %%s (index %%d)\\n\", __func__, "
"index);\n");
fprintf(f, "#else\n");
fprintf(f, " printf(\"Array iterator out of range: (index %%d)\\n\", index);\n");
fprintf(f, "#endif\n");
fprintf(f, " }\n");
fprintf(f, " else if (internal->skip) {\n");
fprintf(f, " while (index-- > 0 && iter.valid) {\n");
fprintf(f, " rna_iterator_array_next(&iter);\n");
fprintf(f, " }\n");
fprintf(f, " found = (index == -1 && iter.valid);\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " internal->ptr += internal->itemsize * index;\n");
fprintf(f, " found = 1;\n");
fprintf(f, " }\n");
}
else if (STREQ(nextfunc, "rna_iterator_listbase_next")) {
fprintf(f, " ListBaseIterator *internal = &iter.internal.listbase;\n");
fprintf(f, " if (internal->skip) {\n");
fprintf(f, " while (index-- > 0 && iter.valid) {\n");
fprintf(f, " rna_iterator_listbase_next(&iter);\n");
fprintf(f, " }\n");
fprintf(f, " found = (index == -1 && iter.valid);\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " while (index-- > 0 && internal->link) {\n");
fprintf(f, " internal->link = internal->link->next;\n");
fprintf(f, " }\n");
fprintf(f, " found = (index == -1 && internal->link);\n");
fprintf(f, " }\n");
}
fprintf(f,
" if (found) { *r_ptr = %s_%s_get(&iter); }\n",
srna->identifier,
rna_safe_id(prop->identifier));
fprintf(f, " }\n\n");
fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, rna_safe_id(prop->identifier));
fprintf(f, " return found;\n");
#if 0
rna_print_data_get(f, dp);
item_type = (cprop->item_type) ? (const char *)cprop->item_type : "UnknownType";
if (dp->dnalengthname || dp->dnalengthfixed) {
2019-06-04 00:10:44 +10:00
if (dp->dnalengthname) {
fprintf(f,
"\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), data->%s, "
"index);\n",
item_type,
dp->dnaname,
dp->dnaname,
dp->dnalengthname);
2019-06-04 00:10:44 +10:00
}
else {
fprintf(
f,
"\n rna_array_lookup_int(ptr, &RNA_%s, data->%s, sizeof(data->%s[0]), %d, index);\n",
item_type,
dp->dnaname,
dp->dnaname,
dp->dnalengthfixed);
2019-06-04 00:10:44 +10:00
}
}
else {
2019-06-04 00:10:44 +10:00
if (dp->dnapointerlevel == 0) {
fprintf(f,
"\n return rna_listbase_lookup_int(ptr, &RNA_%s, &data->%s, index);\n",
item_type,
dp->dnaname);
2019-06-04 00:10:44 +10:00
}
else {
fprintf(f,
"\n return rna_listbase_lookup_int(ptr, &RNA_%s, data->%s, index);\n",
item_type,
dp->dnaname);
2019-06-04 00:10:44 +10:00
}
}
#endif
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_lookup_string_func(FILE *f,
StructRNA *srna,
PropertyRNA *prop,
PropertyDefRNA *dp,
const char *manualfunc,
const char *item_type)
{
char *func;
StructRNA *item_srna, *item_name_base;
PropertyRNA *item_name_prop;
const int namebuflen = 1024;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
if (!dp->dnastructname || !dp->dnaname) {
return NULL;
}
/* only supported for collection items with name properties */
item_srna = rna_find_struct(item_type);
if (item_srna && item_srna->nameproperty) {
item_name_prop = item_srna->nameproperty;
item_name_base = item_srna;
while (item_name_base->base && item_name_base->base->nameproperty == item_name_prop) {
item_name_base = item_name_base->base;
}
}
else {
return NULL;
}
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "lookup_string");
fprintf(f, "int %s(PointerRNA *ptr, const char *key, PointerRNA *r_ptr)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " return %s(ptr, key, r_ptr);\n", manualfunc);
fprintf(f, "}\n\n");
return func;
}
/* XXX extern declaration could be avoid by including RNA_blender.h, but this has lots of unknown
* DNA types in functions, leading to conflicting function signatures.
*/
fprintf(f,
" extern int %s_%s_length(PointerRNA *);\n",
item_name_base->identifier,
rna_safe_id(item_name_prop->identifier));
fprintf(f,
" extern void %s_%s_get(PointerRNA *, char *);\n\n",
item_name_base->identifier,
rna_safe_id(item_name_prop->identifier));
fprintf(f, " bool found = false;\n");
fprintf(f, " CollectionPropertyIterator iter;\n");
fprintf(f, " char namebuf[%d];\n", namebuflen);
fprintf(f, " char *name;\n\n");
fprintf(f, " %s_%s_begin(&iter, ptr);\n\n", srna->identifier, rna_safe_id(prop->identifier));
fprintf(f, " while (iter.valid) {\n");
fprintf(f, " if (iter.ptr.data) {\n");
fprintf(f,
" int namelen = %s_%s_length(&iter.ptr);\n",
item_name_base->identifier,
rna_safe_id(item_name_prop->identifier));
fprintf(f, " if (namelen < %d) {\n", namebuflen);
fprintf(f,
" %s_%s_get(&iter.ptr, namebuf);\n",
item_name_base->identifier,
rna_safe_id(item_name_prop->identifier));
fprintf(f, " if (strcmp(namebuf, key) == 0) {\n");
fprintf(f, " found = true;\n");
fprintf(f, " *r_ptr = iter.ptr;\n");
fprintf(f, " break;\n");
fprintf(f, " }\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " name = MEM_mallocN(namelen+1, \"name string\");\n");
fprintf(f,
" %s_%s_get(&iter.ptr, name);\n",
item_name_base->identifier,
rna_safe_id(item_name_prop->identifier));
fprintf(f, " if (strcmp(name, key) == 0) {\n");
fprintf(f, " MEM_freeN(name);\n\n");
fprintf(f, " found = true;\n");
fprintf(f, " *r_ptr = iter.ptr;\n");
fprintf(f, " break;\n");
fprintf(f, " }\n");
fprintf(f, " else {\n");
fprintf(f, " MEM_freeN(name);\n");
fprintf(f, " }\n");
fprintf(f, " }\n");
fprintf(f, " }\n");
fprintf(f, " %s_%s_next(&iter);\n", srna->identifier, rna_safe_id(prop->identifier));
fprintf(f, " }\n");
fprintf(f, " %s_%s_end(&iter);\n\n", srna->identifier, rna_safe_id(prop->identifier));
fprintf(f, " return found;\n");
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_next_func(FILE *f,
StructRNA *srna,
PropertyRNA *prop,
PropertyDefRNA *UNUSED(dp),
const char *manualfunc)
{
char *func, *getfunc;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
if (!manualfunc) {
return NULL;
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "next");
fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
fprintf(f, " %s(iter);\n", manualfunc);
getfunc = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "get");
fprintf(f, "\n if (iter->valid) {\n");
fprintf(f, " iter->ptr = %s(iter);", getfunc);
fprintf(f, "\n }\n");
fprintf(f, "}\n\n");
return func;
}
static char *rna_def_property_end_func(FILE *f,
StructRNA *srna,
PropertyRNA *prop,
PropertyDefRNA *UNUSED(dp),
const char *manualfunc)
{
char *func;
if (prop->flag & PROP_IDPROPERTY && manualfunc == NULL) {
return NULL;
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "end");
fprintf(f, "void %s(CollectionPropertyIterator *iter)\n", func);
fprintf(f, "{\n");
if (manualfunc) {
fprintf(f, " %s(iter);\n", manualfunc);
}
fprintf(f, "}\n\n");
return func;
}
static void rna_set_raw_property(PropertyDefRNA *dp, PropertyRNA *prop)
{
if (dp->dnapointerlevel != 0) {
return;
}
if (!dp->dnatype || !dp->dnaname || !dp->dnastructname) {
return;
}
if (STREQ(dp->dnatype, "char")) {
prop->rawtype = PROP_RAW_CHAR;
prop->flag_internal |= PROP_INTERN_RAW_ACCESS;
}
else if (STREQ(dp->dnatype, "short")) {
prop->rawtype = PROP_RAW_SHORT;
prop->flag_internal |= PROP_INTERN_RAW_ACCESS;
}
else if (STREQ(dp->dnatype, "int")) {
prop->rawtype = PROP_RAW_INT;
prop->flag_internal |= PROP_INTERN_RAW_ACCESS;
}
else if (STREQ(dp->dnatype, "float")) {
prop->rawtype = PROP_RAW_FLOAT;
prop->flag_internal |= PROP_INTERN_RAW_ACCESS;
}
else if (STREQ(dp->dnatype, "double")) {
prop->rawtype = PROP_RAW_DOUBLE;
prop->flag_internal |= PROP_INTERN_RAW_ACCESS;
}
}
static void rna_set_raw_offset(FILE *f, StructRNA *srna, PropertyRNA *prop)
{
PropertyDefRNA *dp = rna_find_struct_property_def(srna, prop);
fprintf(f, "\toffsetof(%s, %s), %d", dp->dnastructname, dp->dnaname, prop->rawtype);
}
static void rna_def_property_funcs(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop = dp->prop;
switch (prop->type) {
case PROP_BOOLEAN: {
BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop;
if (!prop->arraydimension) {
if (!bprop->get && !bprop->set && !dp->booleanbit) {
rna_set_raw_property(dp, prop);
}
bprop->get = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)bprop->get);
bprop->set = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)bprop->set);
}
else {
bprop->getarray = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)bprop->getarray);
bprop->setarray = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)bprop->setarray);
}
break;
}
case PROP_INT: {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
if (!prop->arraydimension) {
if (!iprop->get && !iprop->set) {
rna_set_raw_property(dp, prop);
}
iprop->get = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)iprop->get);
iprop->set = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)iprop->set);
}
else {
if (!iprop->getarray && !iprop->setarray) {
rna_set_raw_property(dp, prop);
}
iprop->getarray = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)iprop->getarray);
iprop->setarray = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)iprop->setarray);
}
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop;
if (!prop->arraydimension) {
if (!fprop->get && !fprop->set) {
rna_set_raw_property(dp, prop);
}
fprop->get = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)fprop->get);
fprop->set = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)fprop->set);
}
else {
if (!fprop->getarray && !fprop->setarray) {
rna_set_raw_property(dp, prop);
}
fprop->getarray = (void *)rna_def_property_get_func(
f, srna, prop, dp, (const char *)fprop->getarray);
fprop->setarray = (void *)rna_def_property_set_func(
f, srna, prop, dp, (const char *)fprop->setarray);
}
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
if (!eprop->get && !eprop->set) {
rna_set_raw_property(dp, prop);
}
eprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)eprop->get);
eprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)eprop->set);
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop = (StringPropertyRNA *)prop;
sprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)sprop->get);
sprop->length = (void *)rna_def_property_length_func(
f, srna, prop, dp, (const char *)sprop->length);
sprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)sprop->set);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop;
pprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)pprop->get);
pprop->set = (void *)rna_def_property_set_func(f, srna, prop, dp, (const char *)pprop->set);
if (!pprop->type) {
CLOG_ERROR(
&LOG, "%s.%s, pointer must have a struct type.", srna->identifier, prop->identifier);
DefRNA.error = true;
}
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop;
const char *nextfunc = (const char *)cprop->next;
const char *item_type = (const char *)cprop->item_type;
if (cprop->length) {
/* always generate if we have a manual implementation */
cprop->length = (void *)rna_def_property_length_func(
f, srna, prop, dp, (const char *)cprop->length);
}
else if (dp->dnatype && STREQ(dp->dnatype, "ListBase")) {
/* pass */
}
else if (dp->dnalengthname || dp->dnalengthfixed) {
cprop->length = (void *)rna_def_property_length_func(
f, srna, prop, dp, (const char *)cprop->length);
}
/* test if we can allow raw array access, if it is using our standard
* array get/next function, we can be sure it is an actual array */
if (cprop->next && cprop->get) {
if (STREQ((const char *)cprop->next, "rna_iterator_array_next") &&
STREQ((const char *)cprop->get, "rna_iterator_array_get")) {
prop->flag_internal |= PROP_INTERN_RAW_ARRAY;
}
}
cprop->get = (void *)rna_def_property_get_func(f, srna, prop, dp, (const char *)cprop->get);
cprop->begin = (void *)rna_def_property_begin_func(
f, srna, prop, dp, (const char *)cprop->begin);
cprop->next = (void *)rna_def_property_next_func(
f, srna, prop, dp, (const char *)cprop->next);
cprop->end = (void *)rna_def_property_end_func(f, srna, prop, dp, (const char *)cprop->end);
cprop->lookupint = (void *)rna_def_property_lookup_int_func(
f, srna, prop, dp, (const char *)cprop->lookupint, nextfunc);
cprop->lookupstring = (void *)rna_def_property_lookup_string_func(
f, srna, prop, dp, (const char *)cprop->lookupstring, item_type);
if (!(prop->flag & PROP_IDPROPERTY)) {
if (!cprop->begin) {
CLOG_ERROR(&LOG,
"%s.%s, collection must have a begin function.",
srna->identifier,
prop->identifier);
DefRNA.error = true;
}
if (!cprop->next) {
CLOG_ERROR(&LOG,
"%s.%s, collection must have a next function.",
srna->identifier,
prop->identifier);
DefRNA.error = true;
}
if (!cprop->get) {
CLOG_ERROR(&LOG,
"%s.%s, collection must have a get function.",
srna->identifier,
prop->identifier);
DefRNA.error = true;
}
}
if (!cprop->item_type) {
CLOG_ERROR(&LOG,
"%s.%s, collection must have a struct type.",
srna->identifier,
prop->identifier);
DefRNA.error = true;
}
break;
}
}
}
static void rna_def_property_funcs_header(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
const char *func;
prop = dp->prop;
if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) {
return;
}
func = rna_alloc_function_name(srna->identifier, rna_safe_id(prop->identifier), "");
switch (prop->type) {
case PROP_BOOLEAN: {
if (!prop->arraydimension) {
fprintf(f, "bool %sget(PointerRNA *ptr);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, bool value);\n", func);
}
else if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "void %sget(PointerRNA *ptr, bool values[%u]);\n", func, prop->totarraylength);
fprintf(f,
"void %sset(PointerRNA *ptr, const bool values[%u]);\n",
func,
prop->totarraylength);
}
else {
fprintf(f, "void %sget(PointerRNA *ptr, bool values[]);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, const bool values[]);\n", func);
}
break;
}
case PROP_INT: {
if (!prop->arraydimension) {
fprintf(f, "int %sget(PointerRNA *ptr);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func);
}
else if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "void %sget(PointerRNA *ptr, int values[%u]);\n", func, prop->totarraylength);
fprintf(
f, "void %sset(PointerRNA *ptr, const int values[%u]);\n", func, prop->totarraylength);
}
else {
fprintf(f, "void %sget(PointerRNA *ptr, int values[]);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, const int values[]);\n", func);
}
break;
}
case PROP_FLOAT: {
if (!prop->arraydimension) {
fprintf(f, "float %sget(PointerRNA *ptr);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, float value);\n", func);
}
else if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "void %sget(PointerRNA *ptr, float values[%u]);\n", func, prop->totarraylength);
fprintf(f,
"void %sset(PointerRNA *ptr, const float values[%u]);\n",
func,
prop->totarraylength);
}
else {
fprintf(f, "void %sget(PointerRNA *ptr, float values[]);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, const float values[]);", func);
}
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
int i;
if (eprop->item && eprop->totitem) {
fprintf(f, "enum {\n");
for (i = 0; i < eprop->totitem; i++) {
if (eprop->item[i].identifier[0]) {
fprintf(f,
"\t%s_%s_%s = %d,\n",
srna->identifier,
prop->identifier,
eprop->item[i].identifier,
eprop->item[i].value);
}
}
fprintf(f, "};\n\n");
}
fprintf(f, "int %sget(PointerRNA *ptr);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, int value);\n", func);
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop = (StringPropertyRNA *)prop;
if (sprop->maxlength) {
fprintf(
f, "#define %s_%s_MAX %d\n\n", srna->identifier, prop->identifier, sprop->maxlength);
}
fprintf(f, "void %sget(PointerRNA *ptr, char *value);\n", func);
fprintf(f, "int %slength(PointerRNA *ptr);\n", func);
fprintf(f, "void %sset(PointerRNA *ptr, const char *value);\n", func);
break;
}
case PROP_POINTER: {
fprintf(f, "PointerRNA %sget(PointerRNA *ptr);\n", func);
/*fprintf(f, "void %sset(PointerRNA *ptr, PointerRNA value);\n", func); */
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop;
fprintf(f, "void %sbegin(CollectionPropertyIterator *iter, PointerRNA *ptr);\n", func);
fprintf(f, "void %snext(CollectionPropertyIterator *iter);\n", func);
fprintf(f, "void %send(CollectionPropertyIterator *iter);\n", func);
if (cprop->length) {
fprintf(f, "int %slength(PointerRNA *ptr);\n", func);
}
if (cprop->lookupint) {
fprintf(f, "int %slookup_int(PointerRNA *ptr, int key, PointerRNA *r_ptr);\n", func);
}
if (cprop->lookupstring) {
fprintf(f,
"int %slookup_string(PointerRNA *ptr, const char *key, PointerRNA *r_ptr);\n",
func);
}
break;
}
}
if (prop->getlength) {
char funcname[2048];
rna_construct_wrapper_function_name(
funcname, sizeof(funcname), srna->identifier, prop->identifier, "get_length");
fprintf(f, "int %s(PointerRNA *ptr, int *arraylen);\n", funcname);
}
fprintf(f, "\n");
}
static void rna_def_function_funcs_header(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc)
{
FunctionRNA *func = dfunc->func;
char funcname[2048];
rna_construct_wrapper_function_name(
funcname, sizeof(funcname), srna->identifier, func->identifier, "func");
rna_generate_static_parameter_prototypes(f, srna, dfunc, funcname, 1);
}
static void rna_def_property_funcs_header_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop = dp->prop;
if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) {
return;
}
2018-06-09 14:40:09 +02:00
/* disabled for now to avoid msvc compiler error due to large file size */
#if 0
2019-06-04 00:10:44 +10:00
if (prop->name && prop->description && prop->description[0] != '\0') {
fprintf(f, "\t/* %s: %s */\n", prop->name, prop->description);
2019-06-04 00:10:44 +10:00
}
else if (prop->name) {
fprintf(f, "\t/* %s */\n", prop->name);
2019-06-04 00:10:44 +10:00
}
else {
fprintf(f, "\t/* */\n");
2019-06-04 00:10:44 +10:00
}
#endif
switch (prop->type) {
case PROP_BOOLEAN: {
if (!prop->arraydimension) {
fprintf(f, "\tinline bool %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(bool value);", rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tinline Array<bool, %u> %s(void);\n",
prop->totarraylength,
rna_safe_id(prop->identifier));
fprintf(f,
"\tinline void %s(bool values[%u]);",
rna_safe_id(prop->identifier),
prop->totarraylength);
}
else if (prop->getlength) {
fprintf(f, "\tinline DynamicArray<bool> %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(bool values[]);", rna_safe_id(prop->identifier));
}
break;
}
case PROP_INT: {
if (!prop->arraydimension) {
fprintf(f, "\tinline int %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(int value);", rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tinline Array<int, %u> %s(void);\n",
prop->totarraylength,
rna_safe_id(prop->identifier));
fprintf(f,
"\tinline void %s(int values[%u]);",
rna_safe_id(prop->identifier),
prop->totarraylength);
}
else if (prop->getlength) {
fprintf(f, "\tinline DynamicArray<int> %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(int values[]);", rna_safe_id(prop->identifier));
}
break;
}
case PROP_FLOAT: {
if (!prop->arraydimension) {
fprintf(f, "\tinline float %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(float value);", rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tinline Array<float, %u> %s(void);\n",
prop->totarraylength,
rna_safe_id(prop->identifier));
fprintf(f,
"\tinline void %s(float values[%u]);",
rna_safe_id(prop->identifier),
prop->totarraylength);
}
else if (prop->getlength) {
fprintf(f, "\tinline DynamicArray<float> %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(float values[]);", rna_safe_id(prop->identifier));
}
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
int i;
if (eprop->item) {
fprintf(f, "\tenum %s_enum {\n", rna_safe_id(prop->identifier));
for (i = 0; i < eprop->totitem; i++) {
if (eprop->item[i].identifier[0]) {
fprintf(f,
"\t\t%s_%s = %d,\n",
rna_safe_id(prop->identifier),
eprop->item[i].identifier,
eprop->item[i].value);
}
}
fprintf(f, "\t};\n");
}
fprintf(f,
"\tinline %s_enum %s(void);\n",
rna_safe_id(prop->identifier),
rna_safe_id(prop->identifier));
fprintf(f,
"\tinline void %s(%s_enum value);",
rna_safe_id(prop->identifier),
rna_safe_id(prop->identifier));
break;
}
case PROP_STRING: {
fprintf(f, "\tinline std::string %s(void);\n", rna_safe_id(prop->identifier));
fprintf(f, "\tinline void %s(const std::string& value);", rna_safe_id(prop->identifier));
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop;
if (pprop->type) {
fprintf(
f, "\tinline %s %s(void);", (const char *)pprop->type, rna_safe_id(prop->identifier));
}
else {
fprintf(f, "\tinline %s %s(void);", "UnknownType", rna_safe_id(prop->identifier));
}
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop;
const char *collection_funcs = "DefaultCollectionFunctions";
if (!(dp->prop->flag & PROP_IDPROPERTY || dp->prop->flag_internal & PROP_INTERN_BUILTIN) &&
cprop->property.srna) {
collection_funcs = (char *)cprop->property.srna;
}
if (cprop->item_type) {
fprintf(f,
"\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s, %s)",
collection_funcs,
(const char *)cprop->item_type,
srna->identifier,
rna_safe_id(prop->identifier),
(cprop->length ? "true" : "false"),
(cprop->lookupint ? "true" : "false"),
(cprop->lookupstring ? "true" : "false"));
}
else {
fprintf(f,
"\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s, %s)",
collection_funcs,
"UnknownType",
srna->identifier,
rna_safe_id(prop->identifier),
(cprop->length ? "true" : "false"),
(cprop->lookupint ? "true" : "false"),
(cprop->lookupstring ? "true" : "false"));
}
break;
}
}
fprintf(f, "\n");
}
static const char *rna_parameter_type_cpp_name(PropertyRNA *prop)
{
if (prop->type == PROP_POINTER) {
/* for cpp api we need to use RNA structures names for pointers */
PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop;
return (const char *)pprop->type;
}
return rna_parameter_type_name(prop);
}
static void rna_def_struct_function_prototype_cpp(FILE *f,
StructRNA *UNUSED(srna),
FunctionDefRNA *dfunc,
const char *namespace,
int close_prototype)
{
PropertyDefRNA *dp;
FunctionRNA *func = dfunc->func;
int first = 1;
const char *retval_type = "void";
if (func->c_ret) {
dp = rna_find_parameter_def(func->c_ret);
retval_type = rna_parameter_type_cpp_name(dp->prop);
}
if (namespace && namespace[0]) {
fprintf(f, "\tinline %s %s::%s(", retval_type, namespace, rna_safe_id(func->identifier));
}
else {
fprintf(f, "\tinline %s %s(", retval_type, rna_safe_id(func->identifier));
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_MAIN) {
WRITE_PARAM("void *main");
2019-06-04 00:10:44 +10:00
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_CONTEXT) {
WRITE_PARAM("Context C");
2019-06-04 00:10:44 +10:00
}
for (dp = dfunc->cont.properties.first; dp; dp = dp->next) {
int type, flag, flag_parameter, pout;
const char *ptrstr;
if (dp->prop == func->c_ret) {
continue;
}
type = dp->prop->type;
flag = dp->prop->flag;
flag_parameter = dp->prop->flag_parameter;
pout = (flag_parameter & PARM_OUTPUT);
if (flag & PROP_DYNAMIC) {
ptrstr = pout ? "**" : "*";
}
else if (type == PROP_POINTER) {
ptrstr = pout ? "*" : "";
}
else if (dp->prop->arraydimension) {
ptrstr = "*";
}
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) {
ptrstr = "";
}
else {
ptrstr = pout ? "*" : "";
}
WRITE_COMMA;
if (flag & PROP_DYNAMIC) {
fprintf(
f, "int %s%s_len, ", (flag_parameter & PARM_OUTPUT) ? "*" : "", dp->prop->identifier);
}
if (!(flag & PROP_DYNAMIC) && dp->prop->arraydimension) {
fprintf(f,
"%s %s[%u]",
rna_parameter_type_cpp_name(dp->prop),
rna_safe_id(dp->prop->identifier),
dp->prop->totarraylength);
}
else {
fprintf(f,
"%s%s%s%s",
rna_parameter_type_cpp_name(dp->prop),
(dp->prop->type == PROP_POINTER && ptrstr[0] == '\0') ? "& " : " ",
ptrstr,
rna_safe_id(dp->prop->identifier));
}
}
fprintf(f, ")");
if (close_prototype) {
fprintf(f, ";\n");
}
}
static void rna_def_struct_function_header_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc)
{
if (dfunc->call) {
/* disabled for now to avoid msvc compiler error due to large file size */
#if 0
FunctionRNA *func = dfunc->func;
fprintf(f, "\n\t/* %s */\n", func->description);
#endif
rna_def_struct_function_prototype_cpp(f, srna, dfunc, NULL, 1);
}
}
static void rna_def_property_funcs_impl_cpp(FILE *f, StructRNA *srna, PropertyDefRNA *dp)
{
PropertyRNA *prop;
prop = dp->prop;
if (prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN) {
return;
}
switch (prop->type) {
case PROP_BOOLEAN: {
if (!prop->arraydimension) {
fprintf(f, "\tBOOLEAN_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tBOOLEAN_ARRAY_PROPERTY(%s, %u, %s)",
srna->identifier,
prop->totarraylength,
rna_safe_id(prop->identifier));
}
else if (prop->getlength) {
fprintf(f,
"\tBOOLEAN_DYNAMIC_ARRAY_PROPERTY(%s, %s)",
srna->identifier,
rna_safe_id(prop->identifier));
}
break;
}
case PROP_INT: {
if (!prop->arraydimension) {
fprintf(f, "\tINT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tINT_ARRAY_PROPERTY(%s, %u, %s)",
srna->identifier,
prop->totarraylength,
rna_safe_id(prop->identifier));
}
else if (prop->getlength) {
fprintf(f,
"\tINT_DYNAMIC_ARRAY_PROPERTY(%s, %s)",
srna->identifier,
rna_safe_id(prop->identifier));
}
break;
}
case PROP_FLOAT: {
if (!prop->arraydimension) {
fprintf(f, "\tFLOAT_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier));
}
else if (prop->totarraylength) {
fprintf(f,
"\tFLOAT_ARRAY_PROPERTY(%s, %u, %s)",
srna->identifier,
prop->totarraylength,
rna_safe_id(prop->identifier));
}
else if (prop->getlength) {
fprintf(f,
"\tFLOAT_DYNAMIC_ARRAY_PROPERTY(%s, %s)",
srna->identifier,
rna_safe_id(prop->identifier));
}
break;
}
case PROP_ENUM: {
fprintf(f,
"\tENUM_PROPERTY(%s_enum, %s, %s)",
rna_safe_id(prop->identifier),
srna->identifier,
rna_safe_id(prop->identifier));
break;
}
case PROP_STRING: {
fprintf(f, "\tSTRING_PROPERTY(%s, %s)", srna->identifier, rna_safe_id(prop->identifier));
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop;
if (pprop->type) {
fprintf(f,
"\tPOINTER_PROPERTY(%s, %s, %s)",
(const char *)pprop->type,
srna->identifier,
rna_safe_id(prop->identifier));
}
else {
fprintf(f,
"\tPOINTER_PROPERTY(%s, %s, %s)",
"UnknownType",
srna->identifier,
rna_safe_id(prop->identifier));
}
break;
}
case PROP_COLLECTION: {
2012-03-09 18:28:30 +00:00
#if 0
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop;
2019-06-04 00:10:44 +10:00
if (cprop->type) {
fprintf(f,
"\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s)",
(const char *)cprop->type,
srna->identifier,
prop->identifier,
(cprop->length ? "true" : "false"),
(cprop->lookupint ? "true" : "false"),
(cprop->lookupstring ? "true" : "false"));
2019-06-04 00:10:44 +10:00
}
else {
fprintf(f,
"\tCOLLECTION_PROPERTY(%s, %s, %s, %s, %s, %s)",
"UnknownType",
srna->identifier,
prop->identifier,
(cprop->length ? "true" : "false"),
(cprop->lookupint ? "true" : "false"),
(cprop->lookupstring ? "true" : "false"));
2019-06-04 00:10:44 +10:00
}
2012-03-09 18:28:30 +00:00
#endif
break;
}
}
fprintf(f, "\n");
}
static void rna_def_struct_function_call_impl_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc)
{
PropertyDefRNA *dp;
StructDefRNA *dsrna;
FunctionRNA *func = dfunc->func;
char funcname[2048];
int first = 1;
rna_construct_wrapper_function_name(
funcname, sizeof(funcname), srna->identifier, func->identifier, "func");
fprintf(f, "%s(", funcname);
dsrna = rna_find_struct_def(srna);
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_SELF_ID) {
WRITE_PARAM("(::ID *) ptr.owner_id");
2019-06-04 00:10:44 +10:00
}
if ((func->flag & FUNC_NO_SELF) == 0) {
WRITE_COMMA;
if (dsrna->dnafromprop) {
fprintf(f, "(::%s *) this->ptr.data", dsrna->dnafromname);
}
else if (dsrna->dnaname) {
fprintf(f, "(::%s *) this->ptr.data", dsrna->dnaname);
}
else {
fprintf(f, "(::%s *) this->ptr.data", srna->identifier);
}
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
WRITE_COMMA;
fprintf(f, "this->ptr.type");
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_MAIN) {
WRITE_PARAM("(::Main *) main");
2019-06-04 00:10:44 +10:00
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_CONTEXT) {
WRITE_PARAM("(::bContext *) C.ptr.data");
2019-06-04 00:10:44 +10:00
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_REPORTS) {
WRITE_PARAM("NULL");
2019-06-04 00:10:44 +10:00
}
dp = dfunc->cont.properties.first;
for (; dp; dp = dp->next) {
if (dp->prop == func->c_ret) {
continue;
}
WRITE_COMMA;
if (dp->prop->flag & PROP_DYNAMIC) {
fprintf(f, "%s_len, ", dp->prop->identifier);
}
if (dp->prop->type == PROP_POINTER) {
if ((dp->prop->flag_parameter & PARM_RNAPTR) && !(dp->prop->flag & PROP_THICK_WRAP)) {
fprintf(f,
"(::%s *) &%s.ptr",
rna_parameter_type_name(dp->prop),
rna_safe_id(dp->prop->identifier));
}
else if (dp->prop->flag_parameter & PARM_OUTPUT) {
if (dp->prop->flag_parameter & PARM_RNAPTR) {
fprintf(f, "&%s->ptr", rna_safe_id(dp->prop->identifier));
}
else {
fprintf(f,
"(::%s **) &%s->ptr.data",
rna_parameter_type_name(dp->prop),
rna_safe_id(dp->prop->identifier));
}
}
else if (dp->prop->flag_parameter & PARM_RNAPTR) {
fprintf(f,
"(::%s *) &%s",
rna_parameter_type_name(dp->prop),
rna_safe_id(dp->prop->identifier));
}
else {
fprintf(f,
"(::%s *) %s.ptr.data",
rna_parameter_type_name(dp->prop),
rna_safe_id(dp->prop->identifier));
}
}
else {
fprintf(f, "%s", rna_safe_id(dp->prop->identifier));
}
}
fprintf(f, ");\n");
}
static void rna_def_struct_function_impl_cpp(FILE *f, StructRNA *srna, FunctionDefRNA *dfunc)
{
PropertyDefRNA *dp;
PointerPropertyRNA *pprop;
FunctionRNA *func = dfunc->func;
if (!dfunc->call) {
return;
}
rna_def_struct_function_prototype_cpp(f, srna, dfunc, srna->identifier, 0);
fprintf(f, " {\n");
if (func->c_ret) {
dp = rna_find_parameter_def(func->c_ret);
if (dp->prop->type == PROP_POINTER) {
pprop = (PointerPropertyRNA *)dp->prop;
fprintf(f, "\t\tPointerRNA result;\n");
if ((dp->prop->flag_parameter & PARM_RNAPTR) == 0) {
StructRNA *ret_srna = rna_find_struct((const char *)pprop->type);
fprintf(f, "\t\t::%s *retdata = ", rna_parameter_type_name(dp->prop));
rna_def_struct_function_call_impl_cpp(f, srna, dfunc);
if (ret_srna->flag & STRUCT_ID) {
fprintf(f, "\t\tRNA_id_pointer_create((::ID *) retdata, &result);\n");
}
else {
fprintf(f,
"\t\tRNA_pointer_create((::ID *) ptr.owner_id, &RNA_%s, retdata, &result);\n",
(const char *)pprop->type);
}
}
else {
fprintf(f, "\t\tresult = ");
rna_def_struct_function_call_impl_cpp(f, srna, dfunc);
}
fprintf(f, "\t\treturn %s(result);\n", (const char *)pprop->type);
}
else {
fprintf(f, "\t\treturn ");
rna_def_struct_function_call_impl_cpp(f, srna, dfunc);
}
}
else {
fprintf(f, "\t\t");
rna_def_struct_function_call_impl_cpp(f, srna, dfunc);
}
fprintf(f, "\t}\n\n");
}
static void rna_def_property_wrapper_funcs(FILE *f, StructDefRNA *dsrna, PropertyDefRNA *dp)
{
if (dp->prop->getlength) {
char funcname[2048];
rna_construct_wrapper_function_name(
funcname, sizeof(funcname), dsrna->srna->identifier, dp->prop->identifier, "get_length");
fprintf(f, "int %s(PointerRNA *ptr, int *arraylen)\n", funcname);
fprintf(f, "{\n");
fprintf(f, "\treturn %s(ptr, arraylen);\n", rna_function_string(dp->prop->getlength));
fprintf(f, "}\n\n");
}
}
static void rna_def_function_wrapper_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc)
{
StructRNA *srna = dsrna->srna;
FunctionRNA *func = dfunc->func;
PropertyDefRNA *dparm;
int first;
char funcname[2048];
if (!dfunc->call) {
return;
}
rna_construct_wrapper_function_name(
funcname, sizeof(funcname), srna->identifier, func->identifier, "func");
rna_generate_static_parameter_prototypes(f, srna, dfunc, funcname, 0);
fprintf(f, "\n{\n");
if (func->c_ret) {
fprintf(f, "\treturn %s(", dfunc->call);
}
else {
fprintf(f, "\t%s(", dfunc->call);
}
first = 1;
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_SELF_ID) {
WRITE_PARAM("_selfid");
2019-06-04 00:10:44 +10:00
}
if ((func->flag & FUNC_NO_SELF) == 0) {
WRITE_PARAM("_self");
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
WRITE_PARAM("_type");
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_MAIN) {
WRITE_PARAM("bmain");
2019-06-04 00:10:44 +10:00
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_CONTEXT) {
WRITE_PARAM("C");
2019-06-04 00:10:44 +10:00
}
2019-06-04 00:10:44 +10:00
if (func->flag & FUNC_USE_REPORTS) {
WRITE_PARAM("reports");
2019-06-04 00:10:44 +10:00
}
dparm = dfunc->cont.properties.first;
for (; dparm; dparm = dparm->next) {
if (dparm->prop == func->c_ret) {
continue;
}
WRITE_COMMA;
if (dparm->prop->flag & PROP_DYNAMIC) {
fprintf(f, "%s_len, %s", dparm->prop->identifier, dparm->prop->identifier);
}
else {
fprintf(f, "%s", rna_safe_id(dparm->prop->identifier));
}
}
fprintf(f, ");\n");
fprintf(f, "}\n\n");
}
static void rna_def_function_funcs(FILE *f, StructDefRNA *dsrna, FunctionDefRNA *dfunc)
{
StructRNA *srna;
FunctionRNA *func;
PropertyDefRNA *dparm;
PropertyType type;
const char *funcname, *valstr;
const char *ptrstr;
const bool has_data = (dfunc->cont.properties.first != NULL);
int flag, flag_parameter, pout, cptr, first;
srna = dsrna->srna;
func = dfunc->func;
if (!dfunc->call) {
return;
}
funcname = rna_alloc_function_name(srna->identifier, func->identifier, "call");
/* function definition */
fprintf(f,
"void %s(bContext *C, ReportList *reports, PointerRNA *_ptr, ParameterList *_parms)",
funcname);
fprintf(f, "\n{\n");
/* variable definitions */
if (func->flag & FUNC_USE_SELF_ID) {
fprintf(f, "\tstruct ID *_selfid;\n");
}
if ((func->flag & FUNC_NO_SELF) == 0) {
if (dsrna->dnafromprop) {
fprintf(f, "\tstruct %s *_self;\n", dsrna->dnafromname);
}
else if (dsrna->dnaname) {
fprintf(f, "\tstruct %s *_self;\n", dsrna->dnaname);
}
else {
fprintf(f, "\tstruct %s *_self;\n", srna->identifier);
}
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
fprintf(f, "\tstruct StructRNA *_type;\n");
}
dparm = dfunc->cont.properties.first;
for (; dparm; dparm = dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
flag_parameter = dparm->prop->flag_parameter;
pout = (flag_parameter & PARM_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR));
if (dparm->prop == func->c_ret) {
ptrstr = cptr || dparm->prop->arraydimension ? "*" : "";
/* XXX only arrays and strings are allowed to be dynamic, is this checked anywhere? */
}
else if (cptr || (flag & PROP_DYNAMIC)) {
ptrstr = pout ? "**" : "*";
/* Fixed size arrays and RNA pointers are pre-allocated on the ParameterList stack,
* pass a pointer to it. */
}
else if (type == PROP_POINTER || dparm->prop->arraydimension) {
ptrstr = "*";
}
else if ((type == PROP_POINTER) && (flag_parameter & PARM_RNAPTR) &&
!(flag & PROP_THICK_WRAP)) {
ptrstr = "*";
/* PROP_THICK_WRAP strings are pre-allocated on the ParameterList stack,
* but type name for string props is already (char *), so leave empty */
}
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) {
ptrstr = "";
}
else {
ptrstr = pout ? "*" : "";
}
/* for dynamic parameters we pass an additional int for the length of the parameter */
if (flag & PROP_DYNAMIC) {
fprintf(f, "\tint %s%s_len;\n", pout ? "*" : "", dparm->prop->identifier);
}
fprintf(f,
"\t%s%s %s%s;\n",
rna_type_struct(dparm->prop),
rna_parameter_type_name(dparm->prop),
ptrstr,
dparm->prop->identifier);
}
if (has_data) {
fprintf(f, "\tchar *_data");
if (func->c_ret) {
fprintf(f, ", *_retdata");
}
fprintf(f, ";\n");
fprintf(f, "\t\n");
}
/* assign self */
if (func->flag & FUNC_USE_SELF_ID) {
fprintf(f, "\t_selfid = (struct ID *)_ptr->owner_id;\n");
}
if ((func->flag & FUNC_NO_SELF) == 0) {
if (dsrna->dnafromprop) {
fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", dsrna->dnafromname);
}
else if (dsrna->dnaname) {
fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", dsrna->dnaname);
}
else {
fprintf(f, "\t_self = (struct %s *)_ptr->data;\n", srna->identifier);
}
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
fprintf(f, "\t_type = _ptr->type;\n");
}
if (has_data) {
fprintf(f, "\t_data = (char *)_parms->data;\n");
}
dparm = dfunc->cont.properties.first;
for (; dparm; dparm = dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
flag_parameter = dparm->prop->flag_parameter;
pout = (flag_parameter & PARM_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR));
if (dparm->prop == func->c_ret) {
fprintf(f, "\t_retdata = _data;\n");
}
else {
const char *data_str;
if (cptr || (flag & PROP_DYNAMIC)) {
ptrstr = "**";
valstr = "*";
}
else if ((type == PROP_POINTER) && !(flag & PROP_THICK_WRAP)) {
ptrstr = "**";
valstr = "*";
}
else if (type == PROP_POINTER || dparm->prop->arraydimension) {
ptrstr = "*";
valstr = "";
}
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) {
ptrstr = "";
valstr = "";
}
else {
ptrstr = "*";
valstr = "*";
}
/* This must be kept in sync with RNA_parameter_dynamic_length_get_data and
* RNA_parameter_get, we could just call the function directly, but this is faster. */
if (flag & PROP_DYNAMIC) {
fprintf(f,
"\t%s_len = %s((ParameterDynAlloc *)_data)->array_tot;\n",
dparm->prop->identifier,
pout ? "(int *)&" : "(int)");
data_str = "(&(((ParameterDynAlloc *)_data)->array))";
}
else {
data_str = "_data";
}
fprintf(f, "\t%s = ", dparm->prop->identifier);
if (!pout) {
fprintf(f, "%s", valstr);
}
fprintf(f,
"((%s%s %s)%s);\n",
rna_type_struct(dparm->prop),
rna_parameter_type_name(dparm->prop),
ptrstr,
data_str);
}
if (dparm->next) {
fprintf(f, "\t_data += %d;\n", rna_parameter_size(dparm->prop));
}
}
if (dfunc->call) {
fprintf(f, "\t\n");
fprintf(f, "\t");
if (func->c_ret) {
fprintf(f, "%s = ", func->c_ret->identifier);
}
fprintf(f, "%s(", dfunc->call);
first = 1;
if (func->flag & FUNC_USE_SELF_ID) {
fprintf(f, "_selfid");
first = 0;
}
if ((func->flag & FUNC_NO_SELF) == 0) {
if (!first) {
fprintf(f, ", ");
}
fprintf(f, "_self");
first = 0;
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
if (!first) {
fprintf(f, ", ");
}
fprintf(f, "_type");
first = 0;
}
if (func->flag & FUNC_USE_MAIN) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "CTX_data_main(C)"); /* may have direct access later */
}
if (func->flag & FUNC_USE_CONTEXT) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "C");
}
if (func->flag & FUNC_USE_REPORTS) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "reports");
}
dparm = dfunc->cont.properties.first;
for (; dparm; dparm = dparm->next) {
if (dparm->prop == func->c_ret) {
continue;
}
if (!first) {
fprintf(f, ", ");
}
first = 0;
if (dparm->prop->flag & PROP_DYNAMIC) {
fprintf(f, "%s_len, %s", dparm->prop->identifier, dparm->prop->identifier);
}
else {
fprintf(f, "%s", dparm->prop->identifier);
}
}
fprintf(f, ");\n");
if (func->c_ret) {
dparm = rna_find_parameter_def(func->c_ret);
ptrstr = (((dparm->prop->type == PROP_POINTER) &&
!(dparm->prop->flag_parameter & PARM_RNAPTR)) ||
(dparm->prop->arraydimension)) ?
"*" :
"";
fprintf(f,
"\t*((%s%s %s*)_retdata) = %s;\n",
rna_type_struct(dparm->prop),
rna_parameter_type_name(dparm->prop),
ptrstr,
func->c_ret->identifier);
}
}
fprintf(f, "}\n\n");
dfunc->gencall = funcname;
}
static void rna_auto_types(void)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
/* DNA name for Screen is patched in 2.5, we do the reverse here .. */
if (ds->dnaname) {
if (STREQ(ds->dnaname, "Screen")) {
ds->dnaname = "bScreen";
}
if (STREQ(ds->dnaname, "Group")) {
ds->dnaname = "Collection";
}
if (STREQ(ds->dnaname, "GroupObject")) {
ds->dnaname = "CollectionObject";
}
}
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
if (dp->dnastructname) {
if (STREQ(dp->dnastructname, "Screen")) {
dp->dnastructname = "bScreen";
}
if (STREQ(dp->dnastructname, "Group")) {
dp->dnastructname = "Collection";
}
if (STREQ(dp->dnastructname, "GroupObject")) {
dp->dnastructname = "CollectionObject";
}
}
if (dp->dnatype) {
if (dp->prop->type == PROP_POINTER) {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)dp->prop;
StructRNA *type;
if (!pprop->type && !pprop->get) {
pprop->type = (StructRNA *)rna_find_type(dp->dnatype);
}
if (pprop->type) {
type = rna_find_struct((const char *)pprop->type);
if (type && (type->flag & STRUCT_ID_REFCOUNT)) {
pprop->property.flag |= PROP_ID_REFCOUNT;
}
}
}
else if (dp->prop->type == PROP_COLLECTION) {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)dp->prop;
if (!cprop->item_type && !cprop->get && STREQ(dp->dnatype, "ListBase")) {
cprop->item_type = (StructRNA *)rna_find_type(dp->dnatype);
}
}
}
}
}
}
static void rna_sort(BlenderRNA *brna)
{
StructDefRNA *ds;
StructRNA *srna;
rna_sortlist(&brna->structs, cmp_struct);
rna_sortlist(&DefRNA.structs, cmp_def_struct);
for (srna = brna->structs.first; srna; srna = srna->cont.next) {
rna_sortlist(&srna->cont.properties, cmp_property);
}
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
rna_sortlist(&ds->cont.properties, cmp_def_property);
}
}
static const char *rna_property_structname(PropertyType type)
{
switch (type) {
case PROP_BOOLEAN:
return "BoolPropertyRNA";
case PROP_INT:
return "IntPropertyRNA";
case PROP_FLOAT:
return "FloatPropertyRNA";
case PROP_STRING:
return "StringPropertyRNA";
case PROP_ENUM:
return "EnumPropertyRNA";
case PROP_POINTER:
return "PointerPropertyRNA";
case PROP_COLLECTION:
return "CollectionPropertyRNA";
default:
return "UnknownPropertyRNA";
}
}
static const char *rna_property_subtypename(PropertySubType type)
{
switch (type) {
case PROP_NONE:
return "PROP_NONE";
case PROP_FILEPATH:
return "PROP_FILEPATH";
case PROP_FILENAME:
return "PROP_FILENAME";
case PROP_DIRPATH:
return "PROP_DIRPATH";
case PROP_PIXEL:
return "PROP_PIXEL";
case PROP_BYTESTRING:
return "PROP_BYTESTRING";
case PROP_UNSIGNED:
return "PROP_UNSIGNED";
case PROP_PERCENTAGE:
return "PROP_PERCENTAGE";
case PROP_FACTOR:
return "PROP_FACTOR";
case PROP_ANGLE:
return "PROP_ANGLE";
case PROP_TIME:
return "PROP_TIME";
case PROP_DISTANCE:
return "PROP_DISTANCE";
case PROP_DISTANCE_CAMERA:
return "PROP_DISTANCE_CAMERA";
case PROP_COLOR:
return "PROP_COLOR";
case PROP_TRANSLATION:
return "PROP_TRANSLATION";
case PROP_DIRECTION:
return "PROP_DIRECTION";
case PROP_MATRIX:
return "PROP_MATRIX";
case PROP_EULER:
return "PROP_EULER";
case PROP_QUATERNION:
return "PROP_QUATERNION";
case PROP_AXISANGLE:
return "PROP_AXISANGLE";
case PROP_VELOCITY:
return "PROP_VELOCITY";
case PROP_ACCELERATION:
return "PROP_ACCELERATION";
case PROP_XYZ:
return "PROP_XYZ";
case PROP_COLOR_GAMMA:
return "PROP_COLOR_GAMMA";
case PROP_COORDS:
return "PROP_COORDS";
case PROP_LAYER:
return "PROP_LAYER";
case PROP_LAYER_MEMBER:
return "PROP_LAYER_MEMBER";
case PROP_PASSWORD:
return "PROP_PASSWORD";
case PROP_POWER:
return "PROP_POWER";
case PROP_TEMPERATURE:
return "PROP_TEMPERATURE";
default: {
/* in case we don't have a type preset that includes the subtype */
if (RNA_SUBTYPE_UNIT(type)) {
return rna_property_subtypename(type & ~RNA_SUBTYPE_UNIT(type));
}
return "PROP_SUBTYPE_UNKNOWN";
}
}
}
static const char *rna_property_subtype_unit(PropertySubType type)
{
switch (RNA_SUBTYPE_UNIT(type)) {
case PROP_UNIT_NONE:
return "PROP_UNIT_NONE";
case PROP_UNIT_LENGTH:
return "PROP_UNIT_LENGTH";
case PROP_UNIT_AREA:
return "PROP_UNIT_AREA";
case PROP_UNIT_VOLUME:
return "PROP_UNIT_VOLUME";
case PROP_UNIT_MASS:
return "PROP_UNIT_MASS";
case PROP_UNIT_ROTATION:
return "PROP_UNIT_ROTATION";
case PROP_UNIT_TIME:
return "PROP_UNIT_TIME";
case PROP_UNIT_VELOCITY:
return "PROP_UNIT_VELOCITY";
case PROP_UNIT_ACCELERATION:
return "PROP_UNIT_ACCELERATION";
case PROP_UNIT_CAMERA:
return "PROP_UNIT_CAMERA";
case PROP_UNIT_POWER:
return "PROP_UNIT_POWER";
case PROP_UNIT_TEMPERATURE:
return "PROP_UNIT_TEMPERATURE";
default:
return "PROP_UNIT_UNKNOWN";
}
}
static void rna_generate_prototypes(BlenderRNA *brna, FILE *f)
{
StructRNA *srna;
for (srna = brna->structs.first; srna; srna = srna->cont.next) {
fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier);
}
fprintf(f, "\n");
}
static void rna_generate_blender(BlenderRNA *brna, FILE *f)
{
StructRNA *srna;
fprintf(f,
"BlenderRNA BLENDER_RNA = {\n"
"\t.structs = {");
srna = brna->structs.first;
if (srna) {
fprintf(f, "&RNA_%s, ", srna->identifier);
}
else {
fprintf(f, "NULL, ");
}
srna = brna->structs.last;
if (srna) {
fprintf(f, "&RNA_%s},\n", srna->identifier);
}
else {
fprintf(f, "NULL},\n");
}
fprintf(f,
"\t.structs_map = NULL,\n"
"\t.structs_len = 0,\n"
"};\n\n");
}
static void rna_generate_property_prototypes(BlenderRNA *UNUSED(brna), StructRNA *srna, FILE *f)
{
PropertyRNA *prop;
StructRNA *base;
base = srna->base;
while (base) {
fprintf(f, "\n");
for (prop = base->cont.properties.first; prop; prop = prop->next) {
fprintf(f,
"%s%s rna_%s_%s;\n",
"extern ",
rna_property_structname(prop->type),
base->identifier,
prop->identifier);
}
base = base->base;
}
if (srna->cont.properties.first) {
fprintf(f, "\n");
}
for (prop = srna->cont.properties.first; prop; prop = prop->next) {
fprintf(f,
"%s rna_%s_%s;\n",
rna_property_structname(prop->type),
srna->identifier,
prop->identifier);
}
fprintf(f, "\n");
}
static void rna_generate_parameter_prototypes(BlenderRNA *UNUSED(brna),
StructRNA *srna,
FunctionRNA *func,
FILE *f)
{
PropertyRNA *parm;
for (parm = func->cont.properties.first; parm; parm = parm->next) {
fprintf(f,
"%s%s rna_%s_%s_%s;\n",
"extern ",
rna_property_structname(parm->type),
srna->identifier,
func->identifier,
parm->identifier);
}
if (func->cont.properties.first) {
fprintf(f, "\n");
}
}
static void rna_generate_function_prototypes(BlenderRNA *brna, StructRNA *srna, FILE *f)
{
FunctionRNA *func;
StructRNA *base;
base = srna->base;
while (base) {
for (func = base->functions.first; func; func = func->cont.next) {
fprintf(f,
"%s%s rna_%s_%s_func;\n",
"extern ",
"FunctionRNA",
base->identifier,
func->identifier);
rna_generate_parameter_prototypes(brna, base, func, f);
}
if (base->functions.first) {
fprintf(f, "\n");
}
base = base->base;
}
for (func = srna->functions.first; func; func = func->cont.next) {
fprintf(
f, "%s%s rna_%s_%s_func;\n", "extern ", "FunctionRNA", srna->identifier, func->identifier);
rna_generate_parameter_prototypes(brna, srna, func, f);
}
if (srna->functions.first) {
fprintf(f, "\n");
}
}
static void rna_generate_static_parameter_prototypes(FILE *f,
StructRNA *srna,
FunctionDefRNA *dfunc,
const char *name_override,
int close_prototype)
{
FunctionRNA *func;
PropertyDefRNA *dparm;
StructDefRNA *dsrna;
PropertyType type;
int flag, flag_parameter, pout, cptr, first;
const char *ptrstr;
dsrna = rna_find_struct_def(srna);
func = dfunc->func;
/* return type */
for (dparm = dfunc->cont.properties.first; dparm; dparm = dparm->next) {
if (dparm->prop == func->c_ret) {
if (dparm->prop->arraydimension) {
fprintf(f, "XXX no array return types yet"); /* XXX not supported */
}
else if (dparm->prop->type == PROP_POINTER && !(dparm->prop->flag_parameter & PARM_RNAPTR)) {
fprintf(f, "%s%s *", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop));
}
else {
fprintf(f, "%s%s ", rna_type_struct(dparm->prop), rna_parameter_type_name(dparm->prop));
}
break;
}
}
/* void if nothing to return */
if (!dparm) {
fprintf(f, "void ");
}
/* function name */
if (name_override == NULL || name_override[0] == '\0') {
fprintf(f, "%s(", dfunc->call);
}
else {
fprintf(f, "%s(", name_override);
}
first = 1;
/* self, context and reports parameters */
if (func->flag & FUNC_USE_SELF_ID) {
fprintf(f, "struct ID *_selfid");
first = 0;
}
if ((func->flag & FUNC_NO_SELF) == 0) {
if (!first) {
fprintf(f, ", ");
}
if (dsrna->dnafromprop) {
fprintf(f, "struct %s *_self", dsrna->dnafromname);
}
else if (dsrna->dnaname) {
fprintf(f, "struct %s *_self", dsrna->dnaname);
}
else {
fprintf(f, "struct %s *_self", srna->identifier);
}
first = 0;
}
else if (func->flag & FUNC_USE_SELF_TYPE) {
if (!first) {
fprintf(f, ", ");
}
fprintf(f, "struct StructRNA *_type");
first = 0;
}
if (func->flag & FUNC_USE_MAIN) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "Main *bmain");
}
if (func->flag & FUNC_USE_CONTEXT) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "bContext *C");
}
if (func->flag & FUNC_USE_REPORTS) {
if (!first) {
fprintf(f, ", ");
}
first = 0;
fprintf(f, "ReportList *reports");
}
/* defined parameters */
for (dparm = dfunc->cont.properties.first; dparm; dparm = dparm->next) {
type = dparm->prop->type;
flag = dparm->prop->flag;
flag_parameter = dparm->prop->flag_parameter;
pout = (flag_parameter & PARM_OUTPUT);
cptr = ((type == PROP_POINTER) && !(flag_parameter & PARM_RNAPTR));
if (dparm->prop == func->c_ret) {
continue;
}
if (cptr || (flag & PROP_DYNAMIC)) {
ptrstr = pout ? "**" : "*";
}
else if (type == PROP_POINTER || dparm->prop->arraydimension) {
ptrstr = "*";
}
else if (type == PROP_STRING && (flag & PROP_THICK_WRAP)) {
ptrstr = "";
}
else {
ptrstr = pout ? "*" : "";
}
if (!first) {
fprintf(f, ", ");
}
first = 0;
if (flag & PROP_DYNAMIC) {
fprintf(f, "int %s%s_len, ", pout ? "*" : "", dparm->prop->identifier);
}
if (!(flag & PROP_DYNAMIC) && dparm->prop->arraydimension) {
fprintf(f,
"%s%s %s[%u]",
rna_type_struct(dparm->prop),
rna_parameter_type_name(dparm->prop),
rna_safe_id(dparm->prop->identifier),
dparm->prop->totarraylength);
}
else {
fprintf(f,
"%s%s %s%s",
rna_type_struct(dparm->prop),
rna_parameter_type_name(dparm->prop),
ptrstr,
rna_safe_id(dparm->prop->identifier));
}
}
/* ensure func(void) if there are no args */
if (first) {
fprintf(f, "void");
}
fprintf(f, ")");
if (close_prototype) {
fprintf(f, ";\n");
}
}
static void rna_generate_static_function_prototypes(BlenderRNA *UNUSED(brna),
StructRNA *srna,
FILE *f)
{
FunctionRNA *func;
FunctionDefRNA *dfunc;
int first = 1;
for (func = srna->functions.first; func; func = func->cont.next) {
dfunc = rna_find_function_def(func);
if (dfunc->call) {
if (first) {
fprintf(f, "/* Repeated prototypes to detect errors */\n\n");
first = 0;
}
rna_generate_static_parameter_prototypes(f, srna, dfunc, NULL, 1);
}
}
fprintf(f, "\n");
}
2012-10-23 03:45:35 +00:00
static void rna_generate_struct_prototypes(FILE *f)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
FunctionDefRNA *dfunc;
const char *structures[2048];
int all_structures = 0;
/* structures definitions */
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) {
if (dfunc->call) {
for (dp = dfunc->cont.properties.first; dp; dp = dp->next) {
if (dp->prop->type == PROP_POINTER) {
int a, found = 0;
const char *struct_name = rna_parameter_type_name(dp->prop);
if (struct_name == NULL) {
printf("No struct found for property '%s'\n", dp->prop->identifier);
exit(1);
}
for (a = 0; a < all_structures; a++) {
if (STREQ(struct_name, structures[a])) {
found = 1;
break;
}
}
if (found == 0) {
fprintf(f, "struct %s;\n", struct_name);
if (all_structures >= ARRAY_SIZE(structures)) {
printf("Array size to store all structures names is too small\n");
exit(1);
}
structures[all_structures++] = struct_name;
}
}
}
}
}
}
fprintf(f, "\n");
}
static void rna_generate_property(FILE *f, StructRNA *srna, const char *nest, PropertyRNA *prop)
{
char *strnest = (char *)"", *errnest = (char *)"";
int len, freenest = 0;
if (nest != NULL) {
len = strlen(nest);
strnest = MEM_mallocN(sizeof(char) * (len + 2), "rna_generate_property -> strnest");
errnest = MEM_mallocN(sizeof(char) * (len + 2), "rna_generate_property -> errnest");
strcpy(strnest, "_");
strcat(strnest, nest);
strcpy(errnest, ".");
strcat(errnest, nest);
freenest = 1;
}
switch (prop->type) {
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
int i, defaultfound = 0, totflag = 0;
if (eprop->item) {
fprintf(f,
"static const EnumPropertyItem rna_%s%s_%s_items[%d] = {\n\t",
srna->identifier,
strnest,
prop->identifier,
eprop->totitem + 1);
for (i = 0; i < eprop->totitem; i++) {
fprintf(f, "{%d, ", eprop->item[i].value);
rna_print_c_string(f, eprop->item[i].identifier);
fprintf(f, ", ");
fprintf(f, "%d, ", eprop->item[i].icon);
rna_print_c_string(f, eprop->item[i].name);
fprintf(f, ", ");
rna_print_c_string(f, eprop->item[i].description);
fprintf(f, "},\n\t");
if (eprop->item[i].identifier[0]) {
if (prop->flag & PROP_ENUM_FLAG) {
totflag |= eprop->item[i].value;
}
else {
if (eprop->defaultvalue == eprop->item[i].value) {
defaultfound = 1;
}
}
}
}
fprintf(f, "{0, NULL, 0, NULL, NULL}\n};\n\n");
if (prop->flag & PROP_ENUM_FLAG) {
if (eprop->defaultvalue & ~totflag) {
CLOG_ERROR(&LOG,
"%s%s.%s, enum default includes unused bits (%d).",
srna->identifier,
errnest,
prop->identifier,
eprop->defaultvalue & ~totflag);
DefRNA.error = true;
}
}
else {
if (!defaultfound && !(eprop->itemf && eprop->item == DummyRNA_NULL_items)) {
CLOG_ERROR(&LOG,
"%s%s.%s, enum default is not in items.",
srna->identifier,
errnest,
prop->identifier);
DefRNA.error = true;
}
}
}
else {
CLOG_ERROR(&LOG,
"%s%s.%s, enum must have items defined.",
srna->identifier,
errnest,
prop->identifier);
DefRNA.error = true;
}
break;
}
case PROP_BOOLEAN: {
BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop;
unsigned int i;
if (prop->arraydimension && prop->totarraylength) {
fprintf(f,
"static bool rna_%s%s_%s_default[%u] = {\n\t",
srna->identifier,
strnest,
prop->identifier,
prop->totarraylength);
for (i = 0; i < prop->totarraylength; i++) {
if (bprop->defaultarray) {
fprintf(f, "%d", bprop->defaultarray[i]);
}
else {
fprintf(f, "%d", bprop->defaultvalue);
}
if (i != prop->totarraylength - 1) {
fprintf(f, ",\n\t");
}
}
fprintf(f, "\n};\n\n");
}
break;
}
case PROP_INT: {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
unsigned int i;
if (prop->arraydimension && prop->totarraylength) {
fprintf(f,
"static int rna_%s%s_%s_default[%u] = {\n\t",
srna->identifier,
strnest,
prop->identifier,
prop->totarraylength);
for (i = 0; i < prop->totarraylength; i++) {
if (iprop->defaultarray) {
fprintf(f, "%d", iprop->defaultarray[i]);
}
else {
fprintf(f, "%d", iprop->defaultvalue);
}
if (i != prop->totarraylength - 1) {
fprintf(f, ",\n\t");
}
}
fprintf(f, "\n};\n\n");
}
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop;
unsigned int i;
if (prop->arraydimension && prop->totarraylength) {
fprintf(f,
"static float rna_%s%s_%s_default[%u] = {\n\t",
srna->identifier,
strnest,
prop->identifier,
prop->totarraylength);
for (i = 0; i < prop->totarraylength; i++) {
if (fprop->defaultarray) {
rna_float_print(f, fprop->defaultarray[i]);
}
else {
rna_float_print(f, fprop->defaultvalue);
}
if (i != prop->totarraylength - 1) {
fprintf(f, ",\n\t");
}
}
fprintf(f, "\n};\n\n");
}
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop;
/* XXX This systematically enforces that flag on ID pointers...
* we'll probably have to revisit. :/ */
StructRNA *type = rna_find_struct((const char *)pprop->type);
if (type && (type->flag & STRUCT_ID) &&
!(prop->flag_internal & PROP_INTERN_PTR_OWNERSHIP_FORCED)) {
prop->flag |= PROP_PTR_NO_OWNERSHIP;
}
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop;
/* XXX This systematically enforces that flag on ID pointers...
* we'll probably have to revisit. :/ */
StructRNA *type = rna_find_struct((const char *)cprop->item_type);
if (type && (type->flag & STRUCT_ID) &&
!(prop->flag_internal & PROP_INTERN_PTR_OWNERSHIP_FORCED)) {
prop->flag |= PROP_PTR_NO_OWNERSHIP;
}
break;
}
default:
break;
}
fprintf(f,
"%s rna_%s%s_%s = {\n",
rna_property_structname(prop->type),
srna->identifier,
strnest,
prop->identifier);
if (prop->next) {
fprintf(
f, "\t{(PropertyRNA *)&rna_%s%s_%s, ", srna->identifier, strnest, prop->next->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
if (prop->prev) {
fprintf(
f, "(PropertyRNA *)&rna_%s%s_%s,\n", srna->identifier, strnest, prop->prev->identifier);
}
else {
fprintf(f, "NULL,\n");
}
fprintf(f, "\t%d, ", prop->magic);
rna_print_c_string(f, prop->identifier);
fprintf(f,
", %d, %d, %d, %d, %d, ",
prop->flag,
prop->flag_override,
prop->flag_parameter,
prop->flag_internal,
prop->tags);
rna_print_c_string(f, prop->name);
fprintf(f, ",\n\t");
rna_print_c_string(f, prop->description);
fprintf(f, ",\n\t");
fprintf(f, "%d, ", prop->icon);
rna_print_c_string(f, prop->translation_context);
fprintf(f, ",\n");
fprintf(f,
"\t%s, %s | %s, %s, %u, {%u, %u, %u}, %u,\n",
RNA_property_typename(prop->type),
rna_property_subtypename(prop->subtype),
rna_property_subtype_unit(prop->subtype),
rna_function_string(prop->getlength),
prop->arraydimension,
prop->arraylength[0],
prop->arraylength[1],
prop->arraylength[2],
prop->totarraylength);
fprintf(f,
"\t%s%s, %d, %s, %s, %s, %s, %s,\n",
(prop->flag & PROP_CONTEXT_UPDATE) ? "(UpdateFunc)" : "",
rna_function_string(prop->update),
prop->noteflag,
rna_function_string(prop->editable),
rna_function_string(prop->itemeditable),
rna_function_string(prop->override_diff),
rna_function_string(prop->override_store),
rna_function_string(prop->override_apply));
if (prop->flag_internal & PROP_INTERN_RAW_ACCESS) {
rna_set_raw_offset(f, srna, prop);
}
else {
fprintf(f, "\t0, -1");
}
/* our own type - collections/arrays only */
if (prop->srna) {
fprintf(f, ", &RNA_%s", (const char *)prop->srna);
}
else {
fprintf(f, ", NULL");
}
fprintf(f, "},\n");
switch (prop->type) {
case PROP_BOOLEAN: {
BoolPropertyRNA *bprop = (BoolPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, %s, %s, %s, %d, ",
rna_function_string(bprop->get),
rna_function_string(bprop->set),
rna_function_string(bprop->getarray),
rna_function_string(bprop->setarray),
rna_function_string(bprop->get_ex),
rna_function_string(bprop->set_ex),
rna_function_string(bprop->getarray_ex),
rna_function_string(bprop->setarray_ex),
bprop->defaultvalue);
if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
}
else {
fprintf(f, "NULL\n");
}
break;
}
case PROP_INT: {
IntPropertyRNA *iprop = (IntPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, %s, %s, %s, %s, %s,\n\t",
rna_function_string(iprop->get),
rna_function_string(iprop->set),
rna_function_string(iprop->getarray),
rna_function_string(iprop->setarray),
rna_function_string(iprop->range),
rna_function_string(iprop->get_ex),
rna_function_string(iprop->set_ex),
rna_function_string(iprop->getarray_ex),
rna_function_string(iprop->setarray_ex),
rna_function_string(iprop->range_ex));
rna_int_print(f, iprop->softmin);
fprintf(f, ", ");
rna_int_print(f, iprop->softmax);
fprintf(f, ", ");
rna_int_print(f, iprop->hardmin);
fprintf(f, ", ");
rna_int_print(f, iprop->hardmax);
fprintf(f, ", ");
rna_int_print(f, iprop->step);
fprintf(f, ", ");
rna_int_print(f, iprop->defaultvalue);
fprintf(f, ", ");
if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
}
else {
fprintf(f, "NULL\n");
}
break;
}
case PROP_FLOAT: {
FloatPropertyRNA *fprop = (FloatPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, ",
rna_function_string(fprop->get),
rna_function_string(fprop->set),
rna_function_string(fprop->getarray),
rna_function_string(fprop->setarray),
rna_function_string(fprop->range),
rna_function_string(fprop->get_ex),
rna_function_string(fprop->set_ex),
rna_function_string(fprop->getarray_ex),
rna_function_string(fprop->setarray_ex),
rna_function_string(fprop->range_ex));
rna_float_print(f, fprop->softmin);
fprintf(f, ", ");
rna_float_print(f, fprop->softmax);
fprintf(f, ", ");
rna_float_print(f, fprop->hardmin);
fprintf(f, ", ");
rna_float_print(f, fprop->hardmax);
fprintf(f, ", ");
rna_float_print(f, fprop->step);
fprintf(f, ", ");
rna_int_print(f, (int)fprop->precision);
fprintf(f, ", ");
rna_float_print(f, fprop->defaultvalue);
fprintf(f, ", ");
if (prop->arraydimension && prop->totarraylength) {
fprintf(f, "rna_%s%s_%s_default\n", srna->identifier, strnest, prop->identifier);
}
else {
fprintf(f, "NULL\n");
}
break;
}
case PROP_STRING: {
StringPropertyRNA *sprop = (StringPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, %s, %d, ",
rna_function_string(sprop->get),
rna_function_string(sprop->length),
rna_function_string(sprop->set),
rna_function_string(sprop->get_ex),
rna_function_string(sprop->length_ex),
rna_function_string(sprop->set_ex),
sprop->maxlength);
rna_print_c_string(f, sprop->defaultvalue);
fprintf(f, "\n");
break;
}
case PROP_ENUM: {
EnumPropertyRNA *eprop = (EnumPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, NULL, ",
rna_function_string(eprop->get),
rna_function_string(eprop->set),
rna_function_string(eprop->itemf),
rna_function_string(eprop->get_ex),
rna_function_string(eprop->set_ex));
if (eprop->item) {
fprintf(f, "rna_%s%s_%s_items, ", srna->identifier, strnest, prop->identifier);
}
else {
fprintf(f, "NULL, ");
}
fprintf(f, "%d, %d\n", eprop->totitem, eprop->defaultvalue);
break;
}
case PROP_POINTER: {
PointerPropertyRNA *pprop = (PointerPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s,",
rna_function_string(pprop->get),
rna_function_string(pprop->set),
rna_function_string(pprop->typef),
rna_function_string(pprop->poll));
if (pprop->type) {
fprintf(f, "&RNA_%s\n", (const char *)pprop->type);
}
else {
fprintf(f, "NULL\n");
}
break;
}
case PROP_COLLECTION: {
CollectionPropertyRNA *cprop = (CollectionPropertyRNA *)prop;
fprintf(f,
"\t%s, %s, %s, %s, %s, %s, %s, %s, ",
rna_function_string(cprop->begin),
rna_function_string(cprop->next),
rna_function_string(cprop->end),
rna_function_string(cprop->get),
rna_function_string(cprop->length),
rna_function_string(cprop->lookupint),
rna_function_string(cprop->lookupstring),
rna_function_string(cprop->assignint));
if (cprop->item_type) {
fprintf(f, "&RNA_%s\n", (const char *)cprop->item_type);
}
else {
fprintf(f, "NULL\n");
}
break;
}
}
fprintf(f, "};\n\n");
if (freenest) {
MEM_freeN(strnest);
MEM_freeN(errnest);
}
}
static void rna_generate_struct(BlenderRNA *UNUSED(brna), StructRNA *srna, FILE *f)
{
FunctionRNA *func;
FunctionDefRNA *dfunc;
PropertyRNA *prop, *parm;
StructRNA *base;
fprintf(f, "/* %s */\n", srna->name);
for (prop = srna->cont.properties.first; prop; prop = prop->next) {
rna_generate_property(f, srna, NULL, prop);
}
for (func = srna->functions.first; func; func = func->cont.next) {
for (parm = func->cont.properties.first; parm; parm = parm->next) {
rna_generate_property(f, srna, func->identifier, parm);
}
fprintf(f, "%s%s rna_%s_%s_func = {\n", "", "FunctionRNA", srna->identifier, func->identifier);
if (func->cont.next) {
fprintf(f,
"\t{(FunctionRNA *)&rna_%s_%s_func, ",
srna->identifier,
((FunctionRNA *)func->cont.next)->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
if (func->cont.prev) {
fprintf(f,
"(FunctionRNA *)&rna_%s_%s_func,\n",
srna->identifier,
((FunctionRNA *)func->cont.prev)->identifier);
}
else {
fprintf(f, "NULL,\n");
}
fprintf(f, "\tNULL,\n");
parm = func->cont.properties.first;
if (parm) {
fprintf(f,
"\t{(PropertyRNA *)&rna_%s_%s_%s, ",
srna->identifier,
func->identifier,
parm->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
parm = func->cont.properties.last;
if (parm) {
fprintf(f,
"(PropertyRNA *)&rna_%s_%s_%s}},\n",
srna->identifier,
func->identifier,
parm->identifier);
}
else {
fprintf(f, "NULL}},\n");
}
fprintf(f, "\t");
rna_print_c_string(f, func->identifier);
fprintf(f, ", %d, ", func->flag);
rna_print_c_string(f, func->description);
fprintf(f, ",\n");
dfunc = rna_find_function_def(func);
if (dfunc->gencall) {
fprintf(f, "\t%s,\n", dfunc->gencall);
}
else {
fprintf(f, "\tNULL,\n");
}
if (func->c_ret) {
fprintf(f,
"\t(PropertyRNA *)&rna_%s_%s_%s\n",
srna->identifier,
func->identifier,
func->c_ret->identifier);
}
else {
fprintf(f, "\tNULL\n");
}
fprintf(f, "};\n");
fprintf(f, "\n");
}
fprintf(f, "StructRNA RNA_%s = {\n", srna->identifier);
if (srna->cont.next) {
fprintf(f, "\t{(ContainerRNA *)&RNA_%s, ", ((StructRNA *)srna->cont.next)->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
if (srna->cont.prev) {
fprintf(f, "(ContainerRNA *)&RNA_%s,\n", ((StructRNA *)srna->cont.prev)->identifier);
}
else {
fprintf(f, "NULL,\n");
}
fprintf(f, "\tNULL,\n");
prop = srna->cont.properties.first;
if (prop) {
fprintf(f, "\t{(PropertyRNA *)&rna_%s_%s, ", srna->identifier, prop->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
prop = srna->cont.properties.last;
if (prop) {
fprintf(f, "(PropertyRNA *)&rna_%s_%s}},\n", srna->identifier, prop->identifier);
}
else {
fprintf(f, "NULL}},\n");
}
fprintf(f, "\t");
rna_print_c_string(f, srna->identifier);
fprintf(f, ", NULL, NULL"); /* PyType - Cant initialize here */
fprintf(f, ", %d, NULL, ", srna->flag);
rna_print_c_string(f, srna->name);
fprintf(f, ",\n\t");
rna_print_c_string(f, srna->description);
fprintf(f, ",\n\t");
rna_print_c_string(f, srna->translation_context);
fprintf(f, ", %d,\n", srna->icon);
prop = srna->nameproperty;
if (prop) {
base = srna;
while (base->base && base->base->nameproperty == prop) {
base = base->base;
}
fprintf(f, "\t(PropertyRNA *)&rna_%s_%s, ", base->identifier, prop->identifier);
}
else {
fprintf(f, "\tNULL, ");
}
prop = srna->iteratorproperty;
base = srna;
while (base->base && base->base->iteratorproperty == prop) {
base = base->base;
}
fprintf(f, "(PropertyRNA *)&rna_%s_rna_properties,\n", base->identifier);
if (srna->base) {
fprintf(f, "\t&RNA_%s,\n", srna->base->identifier);
}
else {
fprintf(f, "\tNULL,\n");
}
if (srna->nested) {
fprintf(f, "\t&RNA_%s,\n", srna->nested->identifier);
}
else {
fprintf(f, "\tNULL,\n");
}
fprintf(f, "\t%s,\n", rna_function_string(srna->refine));
fprintf(f, "\t%s,\n", rna_function_string(srna->path));
fprintf(f, "\t%s,\n", rna_function_string(srna->reg));
fprintf(f, "\t%s,\n", rna_function_string(srna->unreg));
fprintf(f, "\t%s,\n", rna_function_string(srna->instance));
fprintf(f, "\t%s,\n", rna_function_string(srna->idproperties));
if (srna->reg && !srna->refine) {
CLOG_ERROR(
&LOG, "%s has a register function, must also have refine function.", srna->identifier);
DefRNA.error = true;
}
func = srna->functions.first;
if (func) {
fprintf(f, "\t{(FunctionRNA *)&rna_%s_%s_func, ", srna->identifier, func->identifier);
}
else {
fprintf(f, "\t{NULL, ");
}
func = srna->functions.last;
if (func) {
fprintf(f, "(FunctionRNA *)&rna_%s_%s_func}\n", srna->identifier, func->identifier);
}
else {
fprintf(f, "NULL}\n");
}
fprintf(f, "};\n");
fprintf(f, "\n");
}
typedef struct RNAProcessItem {
const char *filename;
const char *api_filename;
void (*define)(BlenderRNA *brna);
} RNAProcessItem;
static RNAProcessItem PROCESS_ITEMS[] = {
{"rna_rna.c", NULL, RNA_def_rna},
{"rna_ID.c", NULL, RNA_def_ID},
{"rna_texture.c", "rna_texture_api.c", RNA_def_texture},
{"rna_action.c", "rna_action_api.c", RNA_def_action},
{"rna_animation.c", "rna_animation_api.c", RNA_def_animation},
{"rna_animviz.c", NULL, RNA_def_animviz},
{"rna_armature.c", "rna_armature_api.c", RNA_def_armature},
{"rna_attribute.c", NULL, RNA_def_attribute},
{"rna_asset.c", NULL, RNA_def_asset},
{"rna_boid.c", NULL, RNA_def_boid},
{"rna_brush.c", NULL, RNA_def_brush},
{"rna_cachefile.c", NULL, RNA_def_cachefile},
{"rna_camera.c", "rna_camera_api.c", RNA_def_camera},
{"rna_cloth.c", NULL, RNA_def_cloth},
{"rna_collection.c", NULL, RNA_def_collections},
{"rna_color.c", NULL, RNA_def_color},
{"rna_constraint.c", NULL, RNA_def_constraint},
{"rna_context.c", NULL, RNA_def_context},
{"rna_curve.c", "rna_curve_api.c", RNA_def_curve},
{"rna_dynamicpaint.c", NULL, RNA_def_dynamic_paint},
{"rna_fcurve.c", "rna_fcurve_api.c", RNA_def_fcurve},
{"rna_gpencil.c", NULL, RNA_def_gpencil},
#ifdef WITH_HAIR_NODES
{"rna_hair.c", NULL, RNA_def_hair},
#endif
{"rna_image.c", "rna_image_api.c", RNA_def_image},
{"rna_key.c", NULL, RNA_def_key},
{"rna_light.c", NULL, RNA_def_light},
{"rna_lattice.c", "rna_lattice_api.c", RNA_def_lattice},
{"rna_layer.c", NULL, RNA_def_view_layer},
{"rna_linestyle.c", NULL, RNA_def_linestyle},
{"rna_main.c", "rna_main_api.c", RNA_def_main},
{"rna_fluid.c", NULL, RNA_def_fluid},
{"rna_material.c", "rna_material_api.c", RNA_def_material},
{"rna_mesh.c", "rna_mesh_api.c", RNA_def_mesh},
{"rna_meta.c", "rna_meta_api.c", RNA_def_meta},
{"rna_modifier.c", NULL, RNA_def_modifier},
{"rna_gpencil_modifier.c", NULL, RNA_def_greasepencil_modifier},
{"rna_shader_fx.c", NULL, RNA_def_shader_fx},
{"rna_nla.c", NULL, RNA_def_nla},
{"rna_nodetree.c", NULL, RNA_def_nodetree},
{"rna_object.c", "rna_object_api.c", RNA_def_object},
{"rna_object_force.c", NULL, RNA_def_object_force},
{"rna_depsgraph.c", NULL, RNA_def_depsgraph},
{"rna_packedfile.c", NULL, RNA_def_packedfile},
{"rna_palette.c", NULL, RNA_def_palette},
{"rna_particle.c", NULL, RNA_def_particle},
#ifdef WITH_POINT_CLOUD
{"rna_pointcloud.c", NULL, RNA_def_pointcloud},
#endif
{"rna_pose.c", "rna_pose_api.c", RNA_def_pose},
{"rna_curveprofile.c", NULL, RNA_def_profile},
{"rna_lightprobe.c", NULL, RNA_def_lightprobe},
{"rna_render.c", NULL, RNA_def_render},
{"rna_rigidbody.c", NULL, RNA_def_rigidbody},
{"rna_scene.c", "rna_scene_api.c", RNA_def_scene},
{"rna_screen.c", NULL, RNA_def_screen},
{"rna_sculpt_paint.c", NULL, RNA_def_sculpt_paint},
{"rna_sequencer.c", "rna_sequencer_api.c", RNA_def_sequencer},
#ifdef WITH_GEOMETRY_NODES
{"rna_simulation.c", NULL, RNA_def_simulation},
#endif
{"rna_space.c", "rna_space_api.c", RNA_def_space},
{"rna_speaker.c", NULL, RNA_def_speaker},
{"rna_test.c", NULL, RNA_def_test},
{"rna_text.c", "rna_text_api.c", RNA_def_text},
{"rna_timeline.c", NULL, RNA_def_timeline_marker},
{"rna_sound.c", "rna_sound_api.c", RNA_def_sound},
{"rna_ui.c", "rna_ui_api.c", RNA_def_ui},
{"rna_userdef.c", NULL, RNA_def_userdef},
{"rna_vfont.c", "rna_vfont_api.c", RNA_def_vfont},
{"rna_volume.c", NULL, RNA_def_volume},
{"rna_wm.c", "rna_wm_api.c", RNA_def_wm},
{"rna_wm_gizmo.c", "rna_wm_gizmo_api.c", RNA_def_wm_gizmo},
{"rna_workspace.c", "rna_workspace_api.c", RNA_def_workspace},
{"rna_world.c", NULL, RNA_def_world},
{"rna_movieclip.c", NULL, RNA_def_movieclip},
{"rna_tracking.c", NULL, RNA_def_tracking},
{"rna_mask.c", NULL, RNA_def_mask},
VR: Initial Virtual Reality support - Milestone 1, Scene Inspection NOTE: While most of the milestone 1 goals are there, a few smaller features and improvements are still to be done. Big picture of this milestone: Initial, OpenXR-based virtual reality support for users and foundation for advanced use cases. Maniphest Task: https://developer.blender.org/T71347 The tasks contains more information about this milestone. To be clear: This is not a feature rich VR implementation, it's focused on the initial scene inspection use case. We intentionally focused on that, further features like controller support are part of the next milestone. - How to use? Instructions on how to use this are here: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/How_to_Test These will be updated and moved to a more official place (likely the manual) soon. Currently Windows Mixed Reality and Oculus devices are usable. Valve/HTC headsets don't support the OpenXR standard yet and hence, do not work with this implementation. --------------- This is the C-side implementation of the features added for initial VR support as per milestone 1. A "VR Scene Inspection" Add-on will be committed separately, to expose the VR functionality in the UI. It also adds some further features for milestone 1, namely a landmarking system (stored view locations in the VR space) Main additions/features: * Support for rendering viewports to an HMD, with good performance. * Option to sync the VR view perspective with a fully interactive, regular 3D View (VR-Mirror). * Option to disable positional tracking. Keeps the current position (calculated based on the VR eye center pose) when enabled while a VR session is running. * Some regular viewport settings for the VR view * RNA/Python-API to query and set VR session state information. * WM-XR: Layer tying Ghost-XR to the Blender specific APIs/data * wmSurface API: drawable, non-window container (manages Ghost-OpenGL and GPU context) * DNA/RNA for management of VR session settings * `--debug-xr` and `--debug-xr-time` commandline options * Utility batch & config file for using the Oculus runtime on Windows. * Most VR data is runtime only. The exception is user settings which are saved to files (`XrSessionSettings`). * VR support can be disabled through the `WITH_XR_OPENXR` compiler flag. For architecture and code documentation, see https://wiki.blender.org/wiki/Source/Interface/XR. --------------- A few thank you's: * A huge shoutout to Ray Molenkamp for his help during the project - it would have not been that successful without him! * Sebastian Koenig and Simeon Conzendorf for testing and feedback! * The reviewers, especially Brecht Van Lommel! * Dalai Felinto for pushing and managing me to get this done ;) * The OpenXR working group for providing an open standard. I think we're the first bigger application to adopt OpenXR. Congratulations to them and ourselves :) This project started as a Google Summer of Code 2019 project - "Core Support of Virtual Reality Headsets through OpenXR" (see https://wiki.blender.org/wiki/User:Severin/GSoC-2019/). Some further information, including ideas for further improvements can be found in the final GSoC report: https://wiki.blender.org/wiki/User:Severin/GSoC-2019/Final_Report Differential Revisions: D6193, D7098 Reviewed by: Brecht Van Lommel, Jeroen Bakker
2020-03-17 20:20:55 +01:00
{"rna_xr.c", NULL, RNA_def_xr},
{NULL, NULL},
};
static void rna_generate(BlenderRNA *brna, FILE *f, const char *filename, const char *api_filename)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
FunctionDefRNA *dfunc;
fprintf(f,
"\n"
"/* Automatically generated struct definitions for the Data API.\n"
" * Do not edit manually, changes will be overwritten. */\n\n"
"#define RNA_RUNTIME\n\n");
fprintf(f, "#include <float.h>\n");
fprintf(f, "#include <stdio.h>\n");
fprintf(f, "#include <limits.h>\n");
fprintf(f, "#include <string.h>\n\n");
fprintf(f, "#include <stddef.h>\n\n");
fprintf(f, "#include \"MEM_guardedalloc.h\"\n\n");
fprintf(f, "#include \"DNA_ID.h\"\n");
fprintf(f, "#include \"DNA_scene_types.h\"\n");
fprintf(f, "#include \"DNA_node_types.h\"\n");
fprintf(f, "#include \"BLI_blenlib.h\"\n\n");
fprintf(f, "#include \"BLI_utildefines.h\"\n\n");
fprintf(f, "#include \"BKE_context.h\"\n");
fprintf(f, "#include \"BKE_lib_id.h\"\n");
fprintf(f, "#include \"BKE_main.h\"\n");
fprintf(f, "#include \"BKE_report.h\"\n");
fprintf(f, "#include \"RNA_define.h\"\n");
fprintf(f, "#include \"RNA_types.h\"\n");
fprintf(f, "#include \"rna_internal.h\"\n\n");
/* include the generated prototypes header */
fprintf(f, "#include \"rna_prototypes_gen.h\"\n\n");
if (filename) {
fprintf(f, "#include \"%s\"\n", filename);
}
if (api_filename) {
fprintf(f, "#include \"%s\"\n", api_filename);
}
fprintf(f, "\n");
/* we want the included C files to have warnings enabled but for the generated code
* ignore unused-parameter warnings which are hard to prevent */
#if defined(__GNUC__) || defined(__clang__)
fprintf(f, "#pragma GCC diagnostic ignored \"-Wunused-parameter\"\n\n");
#endif
fprintf(f, "/* Autogenerated Functions */\n\n");
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (!filename || ds->filename == filename) {
rna_generate_property_prototypes(brna, ds->srna, f);
rna_generate_function_prototypes(brna, ds->srna, f);
}
}
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (!filename || ds->filename == filename) {
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
rna_def_property_funcs(f, ds->srna, dp);
}
}
}
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (!filename || ds->filename == filename) {
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
rna_def_property_wrapper_funcs(f, ds, dp);
}
for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) {
rna_def_function_wrapper_funcs(f, ds, dfunc);
rna_def_function_funcs(f, ds, dfunc);
}
rna_generate_static_function_prototypes(brna, ds->srna, f);
}
}
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (!filename || ds->filename == filename) {
rna_generate_struct(brna, ds->srna, f);
}
}
if (filename && STREQ(filename, "rna_ID.c")) {
/* this is ugly, but we cannot have c files compiled for both
* makesrna and blender with some build systems at the moment */
fprintf(f, "#include \"rna_define.c\"\n\n");
rna_generate_blender(brna, f);
}
}
static void rna_generate_header(BlenderRNA *UNUSED(brna), FILE *f)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
StructRNA *srna;
FunctionDefRNA *dfunc;
fprintf(f, "\n#ifndef __RNA_BLENDER_H__\n");
fprintf(f, "#define __RNA_BLENDER_H__\n\n");
fprintf(f,
"/* Automatically generated function declarations for the Data API.\n"
" * Do not edit manually, changes will be overwritten. */\n\n");
fprintf(f, "#include \"RNA_types.h\"\n\n");
fprintf(f, "#include \"DNA_node_types.h\"\n\n");
fprintf(f, "#ifdef __cplusplus\nextern \"C\" {\n#endif\n\n");
fprintf(f, "#define FOREACH_BEGIN(property, sptr, itemptr) \\\n");
fprintf(f, " { \\\n");
fprintf(f, " CollectionPropertyIterator rna_macro_iter; \\\n");
fprintf(f,
" for (property##_begin(&rna_macro_iter, sptr); rna_macro_iter.valid; "
"property##_next(&rna_macro_iter)) { \\\n");
fprintf(f, " itemptr = rna_macro_iter.ptr;\n\n");
fprintf(f, "#define FOREACH_END(property) \\\n");
fprintf(f, " } \\\n");
fprintf(f, " property##_end(&rna_macro_iter); \\\n");
fprintf(f, " }\n\n");
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
srna = ds->srna;
fprintf(f, "/**************** %s ****************/\n\n", srna->name);
while (srna) {
fprintf(f, "extern StructRNA RNA_%s;\n", srna->identifier);
srna = srna->base;
}
fprintf(f, "\n");
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
rna_def_property_funcs_header(f, ds->srna, dp);
}
for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) {
rna_def_function_funcs_header(f, ds->srna, dfunc);
}
}
fprintf(f, "#ifdef __cplusplus\n}\n#endif\n\n");
fprintf(f, "#endif /* __RNA_BLENDER_H__ */\n\n");
}
static const char *cpp_classes =
""
"\n"
"#include <stdlib.h> /* for malloc */\n"
"#include <string>\n"
"#include <string.h> /* for memcpy */\n"
"\n"
"namespace BL {\n"
"\n"
"#define BOOLEAN_PROPERTY(sname, identifier) \\\n"
" inline bool sname::identifier(void) { return sname##_##identifier##_get(&ptr) ? true: "
"false; } \\\n"
" inline void sname::identifier(bool value) { sname##_##identifier##_set(&ptr, value); }\n"
"\n"
"#define BOOLEAN_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" inline Array<bool, size> sname::identifier(void) \\\n"
" { Array<bool, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n"
" inline void sname::identifier(bool values[size]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define BOOLEAN_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n"
" inline DynamicArray<bool> sname::identifier(void) { \\\n"
" int arraylen[3]; \\\n"
" int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n"
" DynamicArray<bool> ar(len); \\\n"
" sname##_##identifier##_get(&ptr, ar.data); \\\n"
" return ar; } \\\n"
" inline void sname::identifier(bool values[]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define INT_PROPERTY(sname, identifier) \\\n"
" inline int sname::identifier(void) { return sname##_##identifier##_get(&ptr); } \\\n"
" inline void sname::identifier(int value) { sname##_##identifier##_set(&ptr, value); }\n"
"\n"
"#define INT_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" inline Array<int, size> sname::identifier(void) \\\n"
" { Array<int, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n"
" inline void sname::identifier(int values[size]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define INT_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n"
" inline DynamicArray<int> sname::identifier(void) { \\\n"
" int arraylen[3]; \\\n"
" int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n"
" DynamicArray<int> ar(len); \\\n"
" sname##_##identifier##_get(&ptr, ar.data); \\\n"
" return ar; } \\\n"
" inline void sname::identifier(int values[]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define FLOAT_PROPERTY(sname, identifier) \\\n"
" inline float sname::identifier(void) { return sname##_##identifier##_get(&ptr); } \\\n"
" inline void sname::identifier(float value) { sname##_##identifier##_set(&ptr, value); }\n"
"\n"
"#define FLOAT_ARRAY_PROPERTY(sname, size, identifier) \\\n"
" inline Array<float, size> sname::identifier(void) \\\n"
" { Array<float, size> ar; sname##_##identifier##_get(&ptr, ar.data); return ar; } \\\n"
" inline void sname::identifier(float values[size]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define FLOAT_DYNAMIC_ARRAY_PROPERTY(sname, identifier) \\\n"
" inline DynamicArray<float> sname::identifier(void) { \\\n"
" int arraylen[3]; \\\n"
" int len = sname##_##identifier##_get_length(&ptr, arraylen); \\\n"
" DynamicArray<float> ar(len); \\\n"
" sname##_##identifier##_get(&ptr, ar.data); \\\n"
" return ar; } \\\n"
" inline void sname::identifier(float values[]) \\\n"
" { sname##_##identifier##_set(&ptr, values); } \\\n"
"\n"
"#define ENUM_PROPERTY(type, sname, identifier) \\\n"
" inline sname::type sname::identifier(void) { return "
"(type)sname##_##identifier##_get(&ptr); } \\\n"
" inline void sname::identifier(sname::type value) { sname##_##identifier##_set(&ptr, "
"value); }\n"
"\n"
"#define STRING_PROPERTY(sname, identifier) \\\n"
" inline std::string sname::identifier(void) { \\\n"
" int len = sname##_##identifier##_length(&ptr); \\\n"
" std::string str; str.resize(len); \\\n"
" sname##_##identifier##_get(&ptr, &str[0]); return str; } \\\n"
" inline void sname::identifier(const std::string& value) { \\\n"
" sname##_##identifier##_set(&ptr, value.c_str()); } \\\n"
"\n"
"#define POINTER_PROPERTY(type, sname, identifier) \\\n"
" inline type sname::identifier(void) { return type(sname##_##identifier##_get(&ptr)); }\n"
"\n"
"#define COLLECTION_PROPERTY_LENGTH_false(sname, identifier) \\\n"
" inline static int sname##_##identifier##_length_wrap(PointerRNA *ptr) \\\n"
" { \\\n"
" CollectionPropertyIterator iter; \\\n"
" int length = 0; \\\n"
" sname##_##identifier##_begin(&iter, ptr); \\\n"
" while (iter.valid) { \\\n"
" sname##_##identifier##_next(&iter); \\\n"
" ++length; \\\n"
" } \\\n"
" sname##_##identifier##_end(&iter); \\\n"
" return length; \\\n"
" } \n"
"#define COLLECTION_PROPERTY_LENGTH_true(sname, identifier) \\\n"
" inline static int sname##_##identifier##_length_wrap(PointerRNA *ptr) \\\n"
" { return sname##_##identifier##_length(ptr); } \n"
"\n"
"#define COLLECTION_PROPERTY_LOOKUP_INT_false(sname, identifier) \\\n"
" inline static int sname##_##identifier##_lookup_int_wrap(PointerRNA *ptr, int key, "
"PointerRNA *r_ptr) \\\n"
" { \\\n"
" CollectionPropertyIterator iter; \\\n"
" int i = 0, found = 0; \\\n"
" sname##_##identifier##_begin(&iter, ptr); \\\n"
" while (iter.valid) { \\\n"
" if (i == key) { \\\n"
" *r_ptr = iter.ptr; \\\n"
" found = 1; \\\n"
" break; \\\n"
" } \\\n"
" sname##_##identifier##_next(&iter); \\\n"
" ++i; \\\n"
" } \\\n"
" sname##_##identifier##_end(&iter); \\\n"
" if (!found) { \\\n"
" memset(r_ptr, 0, sizeof(*r_ptr)); \\\n"
" } \\\n"
" return found; \\\n"
" } \n"
"#define COLLECTION_PROPERTY_LOOKUP_INT_true(sname, identifier) \\\n"
" inline static int sname##_##identifier##_lookup_int_wrap(PointerRNA *ptr, int key, "
"PointerRNA *r_ptr) \\\n"
" { \\\n"
" int found = sname##_##identifier##_lookup_int(ptr, key, r_ptr); \\\n"
" if (!found) { \\\n"
" memset(r_ptr, 0, sizeof(*r_ptr)); \\\n"
" } \\\n"
" return found; \\\n"
" } \n"
"#define COLLECTION_PROPERTY_LOOKUP_STRING_false(sname, identifier) \\\n"
" inline static int sname##_##identifier##_lookup_string_wrap(PointerRNA *ptr, const char "
"*key, PointerRNA *r_ptr) \\\n"
" { \\\n"
" CollectionPropertyIterator iter; \\\n"
" int found = 0; \\\n"
" PropertyRNA *item_name_prop = RNA_struct_name_property(ptr->type); \\\n"
" sname##_##identifier##_begin(&iter, ptr); \\\n"
" while (iter.valid && !found) { \\\n"
" char name_fixed[32]; \\\n"
" const char *name; \\\n"
" int name_length; \\\n"
" name = RNA_property_string_get_alloc(&iter.ptr, item_name_prop, name_fixed, "
"sizeof(name_fixed), &name_length); \\\n"
" if (!strncmp(name, key, name_length)) { \\\n"
" *r_ptr = iter.ptr; \\\n"
" found = 1; \\\n"
" } \\\n"
" if (name_fixed != name) { \\\n"
" MEM_freeN((void *) name); \\\n"
" } \\\n"
" sname##_##identifier##_next(&iter); \\\n"
" } \\\n"
" sname##_##identifier##_end(&iter); \\\n"
" if (!found) { \\\n"
" memset(r_ptr, 0, sizeof(*r_ptr)); \\\n"
" } \\\n"
" return found; \\\n"
" } \n"
"#define COLLECTION_PROPERTY_LOOKUP_STRING_true(sname, identifier) \\\n"
" inline static int sname##_##identifier##_lookup_string_wrap(PointerRNA *ptr, const char "
"*key, PointerRNA *r_ptr) \\\n"
" { \\\n"
" int found = sname##_##identifier##_lookup_string(ptr, key, r_ptr); \\\n"
" if (!found) { \\\n"
" memset(r_ptr, 0, sizeof(*r_ptr)); \\\n"
" } \\\n"
" return found; \\\n"
" } \n"
"#define COLLECTION_PROPERTY(collection_funcs, type, sname, identifier, has_length, "
"has_lookup_int, has_lookup_string) \\\n"
" typedef CollectionIterator<type, sname##_##identifier##_begin, \\\n"
" sname##_##identifier##_next, sname##_##identifier##_end> identifier##_iterator; \\\n"
" COLLECTION_PROPERTY_LENGTH_##has_length(sname, identifier) \\\n"
" COLLECTION_PROPERTY_LOOKUP_INT_##has_lookup_int(sname, identifier) \\\n"
" COLLECTION_PROPERTY_LOOKUP_STRING_##has_lookup_string(sname, identifier) \\\n"
" CollectionRef<sname, type, sname##_##identifier##_begin, \\\n"
" sname##_##identifier##_next, sname##_##identifier##_end, \\\n"
" sname##_##identifier##_length_wrap, \\\n"
" sname##_##identifier##_lookup_int_wrap, sname##_##identifier##_lookup_string_wrap, "
"collection_funcs> identifier;\n"
"\n"
"class Pointer {\n"
"public:\n"
" Pointer(const PointerRNA &p) : ptr(p) { }\n"
" operator const PointerRNA&() { return ptr; }\n"
" bool is_a(StructRNA *type) { return RNA_struct_is_a(ptr.type, type) ? true: false; }\n"
" operator void*() { return ptr.data; }\n"
" operator bool() { return ptr.data != NULL; }\n"
"\n"
" bool operator==(const Pointer &other) const { return ptr.data == other.ptr.data; }\n"
" bool operator!=(const Pointer &other) const { return ptr.data != other.ptr.data; }\n"
"\n"
" PointerRNA ptr;\n"
"};\n"
"\n"
"\n"
"template<typename T, int Tsize>\n"
"class Array {\n"
"public:\n"
" T data[Tsize];\n"
"\n"
" Array() {}\n"
" Array(const Array<T, Tsize>& other) { memcpy(data, other.data, sizeof(T) * Tsize); }\n"
" const Array<T, Tsize>& operator = (const Array<T, Tsize>& other) { memcpy(data, "
"other.data, sizeof(T) * Tsize); "
"return *this; }\n"
"\n"
" operator T*() { return data; }\n"
" operator const T*() const { return data; }\n"
"};\n"
"\n"
"template<typename T>\n"
"class DynamicArray {\n"
"public:\n"
" T *data;\n"
" int length;\n"
"\n"
" DynamicArray() : data(NULL), length(0) {}\n"
" DynamicArray(int new_length) : data(NULL), length(new_length) { data = (T "
"*)malloc(sizeof(T) * new_length); }\n"
" DynamicArray(const DynamicArray<T>& other) : data(NULL), length(0) { copy_from(other); "
"}\n"
" const DynamicArray<T>& operator = (const DynamicArray<T>& other) { copy_from(other); "
"return *this; }\n"
"\n"
" ~DynamicArray() { if (data) free(data); }\n"
"\n"
" operator T*() { return data; }\n"
"\n"
"protected:\n"
" void copy_from(const DynamicArray<T>& other) {\n"
" if (data) free(data);\n"
" data = (T *)malloc(sizeof(T) * other.length);\n"
" memcpy(data, other.data, sizeof(T) * other.length);\n"
" length = other.length;\n"
" }\n"
"};\n"
"\n"
"typedef void (*TBeginFunc)(CollectionPropertyIterator *iter, PointerRNA *ptr);\n"
"typedef void (*TNextFunc)(CollectionPropertyIterator *iter);\n"
"typedef void (*TEndFunc)(CollectionPropertyIterator *iter);\n"
"typedef int (*TLengthFunc)(PointerRNA *ptr);\n"
"typedef int (*TLookupIntFunc)(PointerRNA *ptr, int key, PointerRNA *r_ptr);\n"
"typedef int (*TLookupStringFunc)(PointerRNA *ptr, const char *key, PointerRNA *r_ptr);\n"
"\n"
"template<typename T, TBeginFunc Tbegin, TNextFunc Tnext, TEndFunc Tend>\n"
"class CollectionIterator {\n"
"public:\n"
" CollectionIterator() : iter(), t(iter.ptr), init(false) { iter.valid = false; }\n"
" CollectionIterator(const PointerRNA &ptr) : CollectionIterator() { this->begin(ptr); }\n"
" ~CollectionIterator(void) { if (init) Tend(&iter); };\n"
"\n"
" CollectionIterator(const CollectionIterator &other) = delete;\n"
" CollectionIterator(CollectionIterator &&other) = delete;\n"
" CollectionIterator &operator=(const CollectionIterator &other) = delete;\n"
" CollectionIterator &operator=(CollectionIterator &&other) = delete;\n"
"\n"
" operator bool(void)\n"
" { return iter.valid != 0; }\n"
" const CollectionIterator<T, Tbegin, Tnext, Tend>& operator++() { Tnext(&iter); t = "
"T(iter.ptr); return *this; }\n"
"\n"
" T& operator*(void) { return t; }\n"
" T* operator->(void) { return &t; }\n"
" bool operator == (const CollectionIterator<T, Tbegin, Tnext, Tend>& other) "
"{ return iter.valid == other.iter.valid; }\n"
" bool operator!=(const CollectionIterator<T, Tbegin, Tnext, Tend>& other) "
"{ return iter.valid != other.iter.valid; }\n"
"\n"
" void begin(const Pointer &ptr)\n"
" { if (init) Tend(&iter); Tbegin(&iter, (PointerRNA *)&ptr.ptr); t = T(iter.ptr); init = "
"true; }\n"
"\n"
"private:\n"
" CollectionPropertyIterator iter;\n"
" T t;\n"
" bool init;\n"
"};\n"
"\n"
"template<typename Tp, typename T, TBeginFunc Tbegin, TNextFunc Tnext, TEndFunc Tend,\n"
" TLengthFunc Tlength, TLookupIntFunc Tlookup_int, TLookupStringFunc Tlookup_string,\n"
" typename Tcollection_funcs>\n"
"class CollectionRef : public Tcollection_funcs {\n"
"public:\n"
" CollectionRef(const PointerRNA &p) : Tcollection_funcs(p), ptr(p) {}\n"
"\n"
" void begin(CollectionIterator<T, Tbegin, Tnext, Tend>& iter)\n"
" { iter.begin(ptr); }\n"
" CollectionIterator<T, Tbegin, Tnext, Tend> begin()\n"
" { return CollectionIterator<T, Tbegin, Tnext, Tend>(ptr); }\n"
" CollectionIterator<T, Tbegin, Tnext, Tend> end()\n"
" { return CollectionIterator<T, Tbegin, Tnext, Tend>(); } /* test */ \n"
""
" int length()\n"
" { return Tlength(&ptr); }\n"
" T operator[](int key)\n"
" { PointerRNA r_ptr; Tlookup_int(&ptr, key, &r_ptr); return T(r_ptr); }\n"
" T operator[](const std::string &key)\n"
" { PointerRNA r_ptr; Tlookup_string(&ptr, key.c_str(), &r_ptr); return T(r_ptr); }\n"
"\n"
"private:\n"
" PointerRNA ptr;\n"
"};\n"
"\n"
"class DefaultCollectionFunctions {\n"
"public:\n"
" DefaultCollectionFunctions(const PointerRNA & /*p*/) {}\n"
"};\n"
"\n"
"\n";
static int rna_is_collection_prop(PropertyRNA *prop)
{
if (!(prop->flag & PROP_IDPROPERTY || prop->flag_internal & PROP_INTERN_BUILTIN)) {
if (prop->type == PROP_COLLECTION) {
return 1;
}
}
return 0;
}
static int rna_is_collection_functions_struct(const char **collection_structs,
const char *struct_name)
{
int a = 0, found = 0;
while (collection_structs[a]) {
if (STREQ(collection_structs[a], struct_name)) {
found = 1;
break;
}
a++;
}
return found;
}
static void rna_generate_header_class_cpp(StructDefRNA *ds, FILE *f)
{
StructRNA *srna = ds->srna;
PropertyDefRNA *dp;
FunctionDefRNA *dfunc;
fprintf(f, "/**************** %s ****************/\n\n", srna->name);
fprintf(f,
"class %s : public %s {\n",
srna->identifier,
(srna->base) ? srna->base->identifier : "Pointer");
fprintf(f, "public:\n");
fprintf(f,
"\t%s(const PointerRNA &ptr_arg) :\n\t\t%s(ptr_arg)",
srna->identifier,
(srna->base) ? srna->base->identifier : "Pointer");
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
if (rna_is_collection_prop(dp->prop)) {
fprintf(f, ",\n\t\t%s(ptr_arg)", dp->prop->identifier);
}
}
fprintf(f, "\n\t\t{}\n\n");
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
rna_def_property_funcs_header_cpp(f, ds->srna, dp);
}
fprintf(f, "\n");
for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) {
rna_def_struct_function_header_cpp(f, srna, dfunc);
}
fprintf(f, "};\n\n");
}
static void rna_generate_header_cpp(BlenderRNA *UNUSED(brna), FILE *f)
{
StructDefRNA *ds;
PropertyDefRNA *dp;
StructRNA *srna;
FunctionDefRNA *dfunc;
const char *first_collection_func_struct = NULL;
const char *collection_func_structs[256] = {NULL};
int all_collection_func_structs = 0;
int max_collection_func_structs = sizeof(collection_func_structs) /
sizeof(collection_func_structs[0]) -
1;
fprintf(f, "\n#ifndef __RNA_BLENDER_CPP_H__\n");
fprintf(f, "#define __RNA_BLENDER_CPP_H__\n\n");
fprintf(f,
"/* Automatically generated classes for the Data API.\n"
" * Do not edit manually, changes will be overwritten. */\n\n");
fprintf(f, "#include \"RNA_blender.h\"\n");
fprintf(f, "#include \"RNA_types.h\"\n");
fprintf(f, "#include \"RNA_access.h\"\n");
fprintf(f, "#include \"DNA_node_types.h\"\n");
fprintf(f, "%s", cpp_classes);
fprintf(f, "/**************** Declarations ****************/\n\n");
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
fprintf(f, "class %s;\n", ds->srna->identifier);
}
fprintf(f, "\n");
/* first get list of all structures used as collection functions, so they'll be declared first */
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
if (rna_is_collection_prop(dp->prop)) {
PropertyRNA *prop = dp->prop;
if (prop->srna) {
/* store name of structure which first uses custom functions for collections */
if (first_collection_func_struct == NULL) {
first_collection_func_struct = ds->srna->identifier;
}
if (!rna_is_collection_functions_struct(collection_func_structs, (char *)prop->srna)) {
if (all_collection_func_structs >= max_collection_func_structs) {
printf("Array size to store all collection structures names is too small\n");
exit(1);
}
collection_func_structs[all_collection_func_structs++] = (char *)prop->srna;
}
}
}
}
}
/* declare all structures in such order:
* - first N structures which doesn't use custom functions for collections
* - all structures used for custom functions in collections
* - all the rest structures
* such an order prevents usage of non-declared classes
*/
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
srna = ds->srna;
if (STREQ(srna->identifier, first_collection_func_struct)) {
StructDefRNA *ds2;
StructRNA *srna2;
for (ds2 = DefRNA.structs.first; ds2; ds2 = ds2->cont.next) {
srna2 = ds2->srna;
if (rna_is_collection_functions_struct(collection_func_structs, srna2->identifier)) {
rna_generate_header_class_cpp(ds2, f);
}
}
}
if (!rna_is_collection_functions_struct(collection_func_structs, srna->identifier)) {
rna_generate_header_class_cpp(ds, f);
}
}
fprintf(f, "} /* namespace BL */\n");
fprintf(f, "\n");
fprintf(f, "/**************** Implementation ****************/\n");
fprintf(f, "\n");
fprintf(f, "/* Structure prototypes */\n\n");
fprintf(f, "extern \"C\" {\n");
rna_generate_struct_prototypes(f);
fprintf(f, "}\n\n");
fprintf(f, "namespace BL {\n");
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
srna = ds->srna;
for (dp = ds->cont.properties.first; dp; dp = dp->next) {
rna_def_property_funcs_impl_cpp(f, ds->srna, dp);
}
fprintf(f, "\n");
for (dfunc = ds->functions.first; dfunc; dfunc = dfunc->cont.next) {
rna_def_struct_function_impl_cpp(f, srna, dfunc);
}
fprintf(f, "\n");
}
fprintf(f, "}\n\n#endif /* __RNA_BLENDER_CPP_H__ */\n\n");
}
static void make_bad_file(const char *file, int line)
{
FILE *fp = fopen(file, "w");
fprintf(fp,
"#error \"Error! can't make correct RNA file from %s:%d, "
"check DNA properties.\"\n",
__FILE__,
line);
fclose(fp);
}
static int rna_preprocess(const char *outfile)
{
BlenderRNA *brna;
StructDefRNA *ds;
FILE *file;
char deffile[4096];
int i, status;
const char *deps[3]; /* expand as needed */
/* define rna */
brna = RNA_create();
for (i = 0; PROCESS_ITEMS[i].filename; i++) {
if (PROCESS_ITEMS[i].define) {
PROCESS_ITEMS[i].define(brna);
/* sanity check */
if (!DefRNA.animate) {
fprintf(stderr, "Error: DefRNA.animate left disabled in %s\n", PROCESS_ITEMS[i].filename);
}
for (ds = DefRNA.structs.first; ds; ds = ds->cont.next) {
if (!ds->filename) {
ds->filename = PROCESS_ITEMS[i].filename;
}
}
}
}
rna_auto_types();
status = (DefRNA.error != 0);
/* create rna prototype header file */
strcpy(deffile, outfile);
strcat(deffile, "rna_prototypes_gen.h");
if (status) {
make_bad_file(deffile, __LINE__);
}
file = fopen(deffile, "w");
if (!file) {
fprintf(stderr, "Unable to open file: %s\n", deffile);
status = 1;
}
else {
fprintf(file,
"/* Automatically generated function declarations for the Data API.\n"
" * Do not edit manually, changes will be overwritten. */\n\n");
rna_generate_prototypes(brna, file);
fclose(file);
status = (DefRNA.error != 0);
}
/* create rna_gen_*.c files */
for (i = 0; PROCESS_ITEMS[i].filename; i++) {
strcpy(deffile, outfile);
strcat(deffile, PROCESS_ITEMS[i].filename);
deffile[strlen(deffile) - 2] = '\0';
strcat(deffile, "_gen.c" TMP_EXT);
if (status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if (!file) {
fprintf(stderr, "Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate(brna, file, PROCESS_ITEMS[i].filename, PROCESS_ITEMS[i].api_filename);
fclose(file);
status = (DefRNA.error != 0);
}
}
/* avoid unneeded rebuilds */
deps[0] = PROCESS_ITEMS[i].filename;
deps[1] = PROCESS_ITEMS[i].api_filename;
deps[2] = NULL;
replace_if_different(deffile, deps);
}
/* create RNA_blender_cpp.h */
strcpy(deffile, outfile);
strcat(deffile, "RNA_blender_cpp.h" TMP_EXT);
if (status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if (!file) {
fprintf(stderr, "Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate_header_cpp(brna, file);
fclose(file);
status = (DefRNA.error != 0);
}
}
replace_if_different(deffile, NULL);
rna_sort(brna);
/* create RNA_blender.h */
strcpy(deffile, outfile);
strcat(deffile, "RNA_blender.h" TMP_EXT);
if (status) {
make_bad_file(deffile, __LINE__);
}
else {
file = fopen(deffile, "w");
if (!file) {
fprintf(stderr, "Unable to open file: %s\n", deffile);
status = 1;
}
else {
rna_generate_header(brna, file);
fclose(file);
status = (DefRNA.error != 0);
}
}
replace_if_different(deffile, NULL);
/* free RNA */
RNA_define_free(brna);
RNA_free(brna);
return status;
}
static void mem_error_cb(const char *errorStr)
{
fprintf(stderr, "%s", errorStr);
fflush(stderr);
}
int main(int argc, char **argv)
{
int return_status = 0;
MEM_init_memleak_detection();
MEM_set_error_callback(mem_error_cb);
CLG_init();
/* Some useful defaults since this runs standalone. */
CLG_output_use_basename_set(true);
CLG_level_set(debugSRNA);
if (argc < 2) {
fprintf(stderr, "Usage: %s outdirectory/\n", argv[0]);
return_status = 1;
}
else {
if (debugSRNA > 0) {
fprintf(stderr, "Running makesrna\n");
}
makesrna_path = argv[0];
return_status = rna_preprocess(argv[1]);
}
CLG_exit();
return return_status;
}