This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/space_view3d/view3d_project.c

528 lines
16 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2008 Blender Foundation.
* All rights reserved.
*
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/space_view3d/view3d_project.c
* \ingroup spview3d
*/
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "BLO_sys_types.h" /* int64_t */
#include "BIF_gl.h" /* bglMats */
#include "BIF_glutil.h" /* bglMats */
#include "BLI_math_vector.h"
#include "ED_view3d.h" /* own include */
#define BL_NEAR_CLIP 0.001
#define BL_ZERO_CLIP 0.001
/* Non Clipping Projection Functions
* ********************************* */
/**
* \note use #ED_view3d_ob_project_mat_get to get the projection matrix
*/
void ED_view3d_project_float_v2_m4(const ARegion *ar, const float co[3], float r_co[2], float mat[4][4])
{
float vec4[4];
copy_v3_v3(vec4, co);
vec4[3] = 1.0;
/* r_co[0] = IS_CLIPPED; */ /* always overwritten */
mul_m4_v4(mat, vec4);
if (vec4[3] > FLT_EPSILON) {
r_co[0] = (float)(ar->winx / 2.0f) + (ar->winx / 2.0f) * vec4[0] / vec4[3];
r_co[1] = (float)(ar->winy / 2.0f) + (ar->winy / 2.0f) * vec4[1] / vec4[3];
}
else {
zero_v2(r_co);
}
}
/**
* \note use #ED_view3d_ob_project_mat_get to get projecting mat
*/
void ED_view3d_project_float_v3_m4(ARegion *ar, const float vec[3], float r_co[3], float mat[4][4])
{
float vec4[4];
copy_v3_v3(vec4, vec);
vec4[3] = 1.0;
/* r_co[0] = IS_CLIPPED; */ /* always overwritten */
mul_m4_v4(mat, vec4);
if (vec4[3] > FLT_EPSILON) {
r_co[0] = (float)(ar->winx / 2.0f) + (ar->winx / 2.0f) * vec4[0] / vec4[3];
r_co[1] = (float)(ar->winy / 2.0f) + (ar->winy / 2.0f) * vec4[1] / vec4[3];
r_co[2] = vec4[2] / vec4[3];
}
else {
zero_v3(r_co);
}
}
/* Clipping Projection Functions
* ***************************** */
eV3DProjStatus ED_view3d_project_base(struct ARegion *ar, struct Base *base)
{
eV3DProjStatus ret = ED_view3d_project_short_global(ar, base->object->obmat[3], &base->sx, V3D_PROJ_TEST_CLIP_DEFAULT);
if (ret != V3D_PROJ_RET_OK) {
base->sx = IS_CLIPPED;
base->sy = 0;
}
return ret;
}
/* perspmat is typically...
* - 'rv3d->perspmat', is_local == FALSE
* - 'rv3d->persmatob', is_local == TRUE
*/
static eV3DProjStatus ed_view3d_project__internal(ARegion *ar,
float perspmat[4][4], const int is_local, /* normally hidden */
const float co[3], float r_co[2], const eV3DProjTest flag)
{
float vec4[4];
/* check for bad flags */
BLI_assert((flag & V3D_PROJ_TEST_ALL) == flag);
if (flag & V3D_PROJ_TEST_CLIP_BB) {
RegionView3D *rv3d = ar->regiondata;
if (rv3d->rflag & RV3D_CLIPPING) {
if (ED_view3d_clipping_test(rv3d, co, is_local)) {
return V3D_PROJ_RET_CLIP_BB;
}
}
}
copy_v3_v3(vec4, co);
vec4[3] = 1.0;
mul_m4_v4(perspmat, vec4);
if (((flag & V3D_PROJ_TEST_CLIP_ZERO) == 0) || (fabsf(vec4[3]) > (float)BL_ZERO_CLIP)) {
if (((flag & V3D_PROJ_TEST_CLIP_NEAR) == 0) || (vec4[3] > (float)BL_NEAR_CLIP)) {
const float scalar = (vec4[3] != 0.0f) ? (1.0f / vec4[3]): 0.0f;
const float fx = ((float)ar->winx / 2.0f) * (1.0f + (vec4[0] * scalar));
if (((flag & V3D_PROJ_TEST_CLIP_WIN) == 0) || (fx > 0.0f && fx < (float)ar->winx)) {
const float fy = ((float)ar->winy / 2.0f) * (1.0f + (vec4[1] * scalar));
if (((flag & V3D_PROJ_TEST_CLIP_WIN) == 0) || (fy > 0.0f && fy < (float)ar->winy)) {
r_co[0] = floorf(fx);
r_co[1] = floorf(fy);
/* check if the point is behind the view, we need to flip in this case */
if (UNLIKELY((flag & V3D_PROJ_TEST_CLIP_NEAR) == 0) && (vec4[3] < 0.0f)) {
negate_v2(r_co);
}
}
else {
return V3D_PROJ_RET_CLIP_WIN;
}
}
else {
return V3D_PROJ_RET_CLIP_WIN;
}
}
else {
return V3D_PROJ_RET_CLIP_NEAR;
}
}
else {
return V3D_PROJ_RET_CLIP_ZERO;
}
return V3D_PROJ_RET_OK;
}
eV3DProjStatus ED_view3d_project_short_ex(ARegion *ar, float perspmat[4][4], const int is_local,
const float co[3], short r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if ((tvec[0] > -32700.0f && tvec[0] < 32700.0f) &&
(tvec[1] > -32700.0f && tvec[1] < 32700.0f))
{
r_co[0] = (short)floorf(tvec[0]);
r_co[1] = (short)floorf(tvec[1]);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
eV3DProjStatus ED_view3d_project_int_ex(ARegion *ar, float perspmat[4][4], const int is_local,
const float co[3], int r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if ((tvec[0] > -2140000000.0f && tvec[0] < 2140000000.0f) &&
(tvec[1] > -2140000000.0f && tvec[1] < 2140000000.0f))
{
r_co[0] = (int)floorf(tvec[0]);
r_co[1] = (int)floorf(tvec[1]);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
eV3DProjStatus ED_view3d_project_float_ex(ARegion *ar, float perspmat[4][4], const int is_local,
const float co[3], float r_co[2], const eV3DProjTest flag)
{
float tvec[2];
eV3DProjStatus ret = ed_view3d_project__internal(ar, perspmat, is_local, co, tvec, flag);
if (ret == V3D_PROJ_RET_OK) {
if (finite(tvec[0]) &&
finite(tvec[1]))
{
copy_v2_v2(r_co, tvec);
}
else {
ret = V3D_PROJ_RET_OVERFLOW;
}
}
return ret;
}
/* --- short --- */
eV3DProjStatus ED_view3d_project_short_global(ARegion *ar, const float co[3], short r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_short_ex(ar, rv3d->persmat, FALSE, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_short_object(ARegion *ar, const float co[3], short r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_short_ex(ar, rv3d->persmatob, TRUE, co, r_co, flag);
}
/* --- int --- */
eV3DProjStatus ED_view3d_project_int_global(ARegion *ar, const float co[3], int r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_int_ex(ar, rv3d->persmat, FALSE, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_int_object(ARegion *ar, const float co[3], int r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_int_ex(ar, rv3d->persmatob, TRUE, co, r_co, flag);
}
/* --- float --- */
eV3DProjStatus ED_view3d_project_float_global(ARegion *ar, const float co[3], float r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_float_ex(ar, rv3d->persmat, FALSE, co, r_co, flag);
}
/* object space, use ED_view3d_init_mats_rv3d before calling */
eV3DProjStatus ED_view3d_project_float_object(ARegion *ar, const float co[3], float r_co[2], const eV3DProjTest flag)
{
RegionView3D *rv3d = ar->regiondata;
return ED_view3d_project_float_ex(ar, rv3d->persmatob, TRUE, co, r_co, flag);
}
/* More Generic Window/Ray/Vector projection functions
* *************************************************** */
/* odd function, need to document better */
int initgrabz(RegionView3D *rv3d, float x, float y, float z)
{
int flip = FALSE;
if (rv3d == NULL) return flip;
rv3d->zfac = rv3d->persmat[0][3] * x + rv3d->persmat[1][3] * y + rv3d->persmat[2][3] * z + rv3d->persmat[3][3];
if (rv3d->zfac < 0.0f)
flip = TRUE;
/* if x,y,z is exactly the viewport offset, zfac is 0 and we don't want that
* (accounting for near zero values)
*/
if (rv3d->zfac < 1.e-6f && rv3d->zfac > -1.e-6f) rv3d->zfac = 1.0f;
/* Negative zfac means x, y, z was behind the camera (in perspective).
* This gives flipped directions, so revert back to ok default case.
*/
/* NOTE: I've changed this to flip zfac to be positive again for now so that GPencil draws ok
* Aligorith, 2009Aug31 */
//if (rv3d->zfac < 0.0f) rv3d->zfac = 1.0f;
if (rv3d->zfac < 0.0f) rv3d->zfac = -rv3d->zfac;
return flip;
}
/**
* Calculate a 3d viewpoint and direction vector from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_normal is the direction towards mval.
* ray_start is clipped by the view near limit so points in front of it are always in view.
* In orthographic view the resulting ray_normal will match the view vector.
* \param ar The region (used for the window width and height).
* \param v3d The 3d viewport (used for near clipping value).
* \param mval The area relative 2d location (such as event->mval, converted into float[2]).
* \param ray_start The world-space starting point of the segment.
* \param ray_normal The normalized world-space direction of towards mval.
*/
void ED_view3d_win_to_ray(ARegion *ar, View3D *v3d, const float mval[2], float ray_start[3], float ray_normal[3])
{
float ray_end[3];
ED_view3d_win_to_segment(ar, v3d, mval, ray_start, ray_end);
sub_v3_v3v3(ray_normal, ray_end, ray_start);
normalize_v3(ray_normal);
}
/**
* Calculate a normalized 3d direction vector from the viewpoint towards a global location.
* In orthographic view the resulting vector will match the view vector.
* \param rv3d The region (used for the window width and height).
* \param coord The world-space location.
* \param vec The resulting normalized vector.
*/
void ED_view3d_global_to_vector(RegionView3D *rv3d, const float coord[3], float vec[3])
{
if (rv3d->is_persp) {
float p1[4], p2[4];
copy_v3_v3(p1, coord);
p1[3] = 1.0f;
copy_v3_v3(p2, p1);
p2[3] = 1.0f;
mul_m4_v4(rv3d->viewmat, p2);
mul_v3_fl(p2, 2.0f);
mul_m4_v4(rv3d->viewinv, p2);
sub_v3_v3v3(vec, p1, p2);
}
else {
copy_v3_v3(vec, rv3d->viewinv[2]);
}
normalize_v3(vec);
}
/**
* Calculate a 3d location from 2d window coordinates.
* \param ar The region (used for the window width and height).
* \param depth_pt The reference location used to calculate the Z depth.
* \param mval The area relative location (such as event->mval converted to floats).
* \param out The resulting world-space location.
*/
void ED_view3d_win_to_3d(ARegion *ar, const float depth_pt[3], const float mval[2], float out[3])
{
RegionView3D *rv3d = ar->regiondata;
float line_sta[3];
float line_end[3];
if (rv3d->is_persp) {
float mousevec[3];
copy_v3_v3(line_sta, rv3d->viewinv[3]);
ED_view3d_win_to_vector(ar, mval, mousevec);
add_v3_v3v3(line_end, line_sta, mousevec);
if (isect_line_plane_v3(out, line_sta, line_end, depth_pt, rv3d->viewinv[2], TRUE) == 0) {
/* highly unlikely to ever happen, mouse vec paralelle with view plane */
zero_v3(out);
}
}
else {
const float dx = (2.0f * mval[0] / (float)ar->winx) - 1.0f;
const float dy = (2.0f * mval[1] / (float)ar->winy) - 1.0f;
line_sta[0] = (rv3d->persinv[0][0] * dx) + (rv3d->persinv[1][0] * dy) + rv3d->viewinv[3][0];
line_sta[1] = (rv3d->persinv[0][1] * dx) + (rv3d->persinv[1][1] * dy) + rv3d->viewinv[3][1];
line_sta[2] = (rv3d->persinv[0][2] * dx) + (rv3d->persinv[1][2] * dy) + rv3d->viewinv[3][2];
add_v3_v3v3(line_end, line_sta, rv3d->viewinv[2]);
closest_to_line_v3(out, depth_pt, line_sta, line_end);
}
}
/**
* Calculate a 3d difference vector from 2d window offset.
* note that initgrabz() must be called first to determine
* the depth used to calculate the delta.
* \param ar The region (used for the window width and height).
* \param mval The area relative 2d difference (such as event->mval[0] - other_x).
* \param out The resulting world-space delta.
*/
void ED_view3d_win_to_delta(ARegion *ar, const float mval[2], float out[3])
{
RegionView3D *rv3d = ar->regiondata;
float dx, dy;
dx = 2.0f * mval[0] * rv3d->zfac / ar->winx;
dy = 2.0f * mval[1] * rv3d->zfac / ar->winy;
out[0] = (rv3d->persinv[0][0] * dx + rv3d->persinv[1][0] * dy);
out[1] = (rv3d->persinv[0][1] * dx + rv3d->persinv[1][1] * dy);
out[2] = (rv3d->persinv[0][2] * dx + rv3d->persinv[1][2] * dy);
}
/**
* Calculate a 3d direction vector from 2d window coordinates.
* This direction vector starts and the view in the direction of the 2d window coordinates.
* In orthographic view all window coordinates yield the same vector.
*
* \note doesn't rely on initgrabz
* for perspective view, get the vector direction to
* the mouse cursor as a normalized vector.
*
* \param ar The region (used for the window width and height).
* \param mval The area relative 2d location (such as event->mval converted to floats).
* \param out The resulting normalized world-space direction vector.
*/
void ED_view3d_win_to_vector(ARegion *ar, const float mval[2], float out[3])
{
RegionView3D *rv3d = ar->regiondata;
if (rv3d->is_persp) {
out[0] = 2.0f * (mval[0] / ar->winx) - 1.0f;
out[1] = 2.0f * (mval[1] / ar->winy) - 1.0f;
out[2] = -0.5f;
mul_project_m4_v3(rv3d->persinv, out);
sub_v3_v3(out, rv3d->viewinv[3]);
}
else {
copy_v3_v3(out, rv3d->viewinv[2]);
}
normalize_v3(out);
}
void ED_view3d_win_to_segment(ARegion *ar, View3D *v3d, const float mval[2], float ray_start[3], float ray_end[3])
{
RegionView3D *rv3d = ar->regiondata;
if (rv3d->is_persp) {
float vec[3];
ED_view3d_win_to_vector(ar, mval, vec);
copy_v3_v3(ray_start, rv3d->viewinv[3]);
madd_v3_v3v3fl(ray_start, rv3d->viewinv[3], vec, v3d->near);
madd_v3_v3v3fl(ray_end, rv3d->viewinv[3], vec, v3d->far);
}
else {
float vec[4];
vec[0] = 2.0f * mval[0] / ar->winx - 1;
vec[1] = 2.0f * mval[1] / ar->winy - 1;
vec[2] = 0.0f;
vec[3] = 1.0f;
mul_m4_v4(rv3d->persinv, vec);
madd_v3_v3v3fl(ray_start, vec, rv3d->viewinv[2], 1000.0f);
madd_v3_v3v3fl(ray_end, vec, rv3d->viewinv[2], -1000.0f);
}
}
/**
* Calculate a 3d segment from 2d window coordinates.
* This ray_start is located at the viewpoint, ray_end is a far point.
* ray_start and ray_end are clipped by the view near and far limits
* so points along this line are always in view.
* In orthographic view all resulting segments will be parallel.
* \param ar The region (used for the window width and height).
* \param v3d The 3d viewport (used for near and far clipping range).
* \param mval The area relative 2d location (such as event->mval, converted into float[2]).
* \param ray_start The world-space starting point of the segment.
* \param ray_end The world-space end point of the segment.
* \return success, FALSE if the segment is totally clipped.
*/
int ED_view3d_win_to_segment_clip(ARegion *ar, View3D *v3d, const float mval[2], float ray_start[3], float ray_end[3])
{
RegionView3D *rv3d = ar->regiondata;
ED_view3d_win_to_segment(ar, v3d, mval, ray_start, ray_end);
/* clipping */
if (rv3d->rflag & RV3D_CLIPPING) {
/* if the ray is totally clipped,
* restore the original values but return FALSE
* caller can choose what to do */
float tray_start[3] = {UNPACK3(ray_start)};
float tray_end[3] = {UNPACK3(ray_end)};
int a;
for (a = 0; a < 4; a++) {
if (clip_line_plane(tray_start, tray_end, rv3d->clip[a]) == FALSE) {
return FALSE;
}
}
/* copy in clipped values */
copy_v3_v3(ray_start, tray_start);
copy_v3_v3(ray_end, tray_end);
}
return TRUE;
}
/* Utility functions for projection
* ******************************** */
void ED_view3d_ob_project_mat_get(RegionView3D *rv3d, Object *ob, float pmat[4][4])
{
float vmat[4][4];
mult_m4_m4m4(vmat, rv3d->viewmat, ob->obmat);
mult_m4_m4m4(pmat, rv3d->winmat, vmat);
}
/**
* Uses window coordinates (x,y) and depth component z to find a point in
* modelspace */
void ED_view3d_unproject(bglMats *mats, float out[3], const float x, const float y, const float z)
{
double ux, uy, uz;
gluUnProject(x, y, z, mats->modelview, mats->projection,
(GLint *)mats->viewport, &ux, &uy, &uz);
out[0] = ux;
out[1] = uy;
out[2] = uz;
}