This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/gameengine/Physics/Sumo/Fuzzics/src/SM_Object.cpp

1057 lines
24 KiB
C++
Raw Normal View History

2002-10-12 11:37:38 +00:00
/**
* $Id$
* Copyright (C) 2001 NaN Technologies B.V.
* The basic physics object.
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#include "SM_Object.h"
#include "SM_Scene.h"
#include "SM_FhObject.h"
#include "SM_Debug.h"
2002-10-12 11:37:38 +00:00
#include "MT_MinMax.h"
// Tweak parameters
static const MT_Scalar ImpulseThreshold = 0.5;
static const MT_Scalar FixThreshold = 0.01;
static const MT_Scalar FixVelocity = 0.01;
2002-10-12 11:37:38 +00:00
SM_Object::SM_Object(
DT_ShapeHandle shape,
const SM_MaterialProps *materialProps,
const SM_ShapeProps *shapeProps,
SM_Object *dynamicParent) :
m_dynamicParent(dynamicParent),
m_client_object(0),
2002-10-12 11:37:38 +00:00
m_shape(shape),
m_materialProps(materialProps),
m_materialPropsBackup(0),
m_shapeProps(shapeProps),
m_shapePropsBackup(0),
m_object(DT_CreateObject(this, shape)),
m_margin(0.0),
m_scaling(1.0, 1.0, 1.0),
m_reaction_impulse(0.0, 0.0, 0.0),
m_reaction_force(0.0, 0.0, 0.0),
m_kinematic(false),
m_prev_kinematic(false),
m_is_rigid_body(false),
m_lin_mom(0.0, 0.0, 0.0),
m_ang_mom(0.0, 0.0, 0.0),
m_force(0.0, 0.0, 0.0),
m_torque(0.0, 0.0, 0.0),
m_error(0.0, 0.0, 0.0),
2002-10-12 11:37:38 +00:00
m_combined_lin_vel (0.0, 0.0, 0.0),
m_combined_ang_vel (0.0, 0.0, 0.0),
m_fh_object(0)
2002-10-12 11:37:38 +00:00
{
m_xform.setIdentity();
m_xform.getValue(m_ogl_matrix);
if (shapeProps &&
(shapeProps->m_do_fh || shapeProps->m_do_rot_fh)) {
DT_Vector3 zero = {0., 0., 0.}, ray = {0.0, 0.0, -10.0};
m_fh_object = new SM_FhObject(DT_NewLineSegment(zero, ray), MT_Vector3(ray), this);
//printf("SM_Object:: WARNING! fh disabled.\n");
2002-10-12 11:37:38 +00:00
}
m_suspended = false;
}
void
SM_Object::
integrateForces(
MT_Scalar timeStep
){
if (!m_suspended) {
m_prev_state = *this;
m_prev_state.setLinearVelocity(actualLinVelocity());
m_prev_state.setAngularVelocity(actualAngVelocity());
if (isDynamic()) {
// Integrate momentum (forward Euler)
m_lin_mom += m_force * timeStep;
m_ang_mom += m_torque * timeStep;
// Drain momentum because of air/water resistance
m_lin_mom *= pow(m_shapeProps->m_lin_drag, timeStep);
m_ang_mom *= pow(m_shapeProps->m_ang_drag, timeStep);
// Set velocities according momentum
m_lin_vel = m_lin_mom / m_shapeProps->m_mass;
m_ang_vel = m_ang_mom / m_shapeProps->m_inertia;
}
}
};
void
SM_Object::
integrateMomentum(
MT_Scalar timeStep
){
// Integrate position and orientation
// only do it for objects with linear and/or angular velocity
// else clients with hierarchies may get into trouble
if (!actualLinVelocity().fuzzyZero() || !actualAngVelocity().fuzzyZero())
{
// those MIDPOINT and BACKWARD integration methods are
// in this form not ok with some testfiles !
// For a release build please use forward euler unless completely tested
2002-10-12 11:37:38 +00:00
//#define MIDPOINT
//#define BACKWARD
#ifdef MIDPOINT
// Midpoint rule
m_pos += (m_prev_state.getLinearVelocity() + actualLinVelocity()) * (timeStep * 0.5);
m_orn += (m_prev_state.getAngularVelocity() * m_prev_state.getOrientation() + actualAngVelocity() * m_orn) * (timeStep * 0.25);
#elif defined BACKWARD
// Backward Euler
m_pos += actualLinVelocity() * timeStep;
m_orn += actualAngVelocity() * m_orn * (timeStep * 0.5);
#else
// Forward Euler
m_pos += m_prev_state.getLinearVelocity() * timeStep;
m_orn += m_prev_state.getAngularVelocity() * m_orn * (timeStep * 0.5);
#endif
m_orn.normalize(); // I might not be necessary to do this every call
calcXform();
notifyClient();
}
}
void SM_Object::dynamicCollision(MT_Point3 local2,
MT_Vector3 normal,
MT_Scalar dist,
MT_Vector3 rel_vel,
MT_Scalar restitution,
MT_Scalar friction_factor,
MT_Scalar invMass
)
{
// Same again but now obj1 is non-dynamic
// Compute the point on obj1 closest to obj2 (= sphere with radius = 0)
// local1 is th point closest to obj2
// local2 is the local origin of obj2
if (MT_EPSILON < dist) {
//printf("SM_Object::Boing: local2 = { %0.5f, %0.5f, %0.5f } (%0.5f)\n",
// local2[0], local2[1], local2[2], local2.length());
// the normal to the contact plane
normal /= dist;
// wr2 points from obj2's origin to the global contact point
// wr2 is only needed for rigid bodies (objects for which the
// friction can change the angular momentum).
// vel2 is adapted to denote the velocity of the contact point
// This should look familiar....
MT_Scalar rel_vel_normal = normal.dot(rel_vel);
//printf(" rel_vel = { %0.5f, %0.5f, %0.5f } (%0.5f)\n",
// rel_vel[0], rel_vel[1], rel_vel[2], rel_vel.length());
if (rel_vel_normal <= 0.0) {
if (-rel_vel_normal < ImpulseThreshold) {
restitution = 0.0;
}
MT_Scalar impulse = -(1.0 + restitution) * rel_vel_normal / invMass;
applyCenterImpulse( impulse * normal);
// The friction part starts here!!!!!!!!
// Compute the lateral component of the relative velocity
// lateral actually points in the opposite direction, i.e.,
// into the direction of the friction force.
2002-10-12 11:37:38 +00:00
#if 0
// test - only do friction on the physics part of the
// velocity.
vel1 -= obj1->m_combined_lin_vel;
vel2 -= obj2->m_combined_lin_vel;
// This should look familiar....
rel_vel = vel2 - vel1;
rel_vel_normal = normal.dot(rel_vel);
#endif
MT_Vector3 lateral = rel_vel - normal * rel_vel_normal;
//printf(" lateral = { %0.5f, %0.5f, %0.5f } (%0.5f)\n",
// lateral[0], lateral[1], lateral[2], lateral.length());
//const SM_ShapeProps *shapeProps = obj2->getShapeProps();
if (m_shapeProps->m_do_anisotropic) {
// For anisotropic friction we scale the lateral component,
// rather than compute a direction-dependent fricition
// factor. For this the lateral component is transformed to
// local coordinates.
MT_Matrix3x3 lcs(m_orn);
// We cannot use m_xform.getBasis() for the matrix, since
// it might contain a non-uniform scaling.
// OPT: it's a bit daft to compute the matrix since the
// quaternion itself can be used to do the transformation.
MT_Vector3 loc_lateral = lateral * lcs;
// lcs is orthogonal so lcs.inversed() == lcs.transposed(),
// and lcs.transposed() * lateral == lateral * lcs.
const MT_Vector3& friction_scaling =
m_shapeProps->m_friction_scaling;
// Scale the local lateral...
loc_lateral.scale(friction_scaling[0],
friction_scaling[1],
friction_scaling[2]);
// ... and transform it back to global coordinates
lateral = lcs * loc_lateral;
}
// A tiny Coulomb friction primer:
// The Coulomb friction law states that the magnitude of the
// maximum possible friction force depends linearly on the
// magnitude of the normal force.
//
// F_max_friction = friction_factor * F_normal
//
// (NB: independent of the contact area!!)
//
// The friction factor depends on the material.
// We use impulses rather than forces but let us not be
// bothered by this.
MT_Scalar rel_vel_lateral = lateral.length();
//printf("rel_vel = { %0.05f, %0.05f, %0.05f}\n", rel_vel[0], rel_vel[1], rel_vel[2]);
//printf("n.l = %0.15f\n", normal.dot(lateral)); /* Should be 0.0 */
if (rel_vel_lateral > MT_EPSILON) {
lateral /= rel_vel_lateral;
// Compute the maximum friction impulse
MT_Scalar max_friction =
friction_factor * MT_max(MT_Scalar(0.0), impulse);
// I guess the GEN_max is not necessary, so let's check it
assert(impulse >= 0.0);
// Here's the trick. We compute the impulse to make the
// lateral velocity zero. (Make the objects stick together
// at the contact point. If this impulse is larger than
// the maximum possible friction impulse, then shrink its
// magnitude to the maximum friction.
if (isRigidBody()) {
// For rigid bodies we take the inertia into account,
// since the friction impulse is going to change the
// angular momentum as well.
MT_Vector3 temp = getInvInertia() * local2.cross(lateral);
MT_Scalar impulse_lateral = rel_vel_lateral /
(invMass + lateral.dot(temp.cross(local2)));
MT_Scalar friction = MT_min(impulse_lateral, max_friction);
applyImpulse(local2 + m_pos, -lateral * friction);
}
else {
MT_Scalar impulse_lateral = rel_vel_lateral / invMass;
MT_Scalar friction = MT_min(impulse_lateral, max_friction);
applyCenterImpulse( -friction * lateral);
}
}
calcXform();
notifyClient();
}
}
}
DT_Bool SM_Object::boing(
2002-10-12 11:37:38 +00:00
void *client_data,
void *object1,
void *object2,
const DT_CollData *coll_data
){
//if (!coll_data)
// return DT_CONTINUE;
2002-10-12 11:37:38 +00:00
SM_Scene *scene = (SM_Scene *)client_data;
SM_Object *obj1 = (SM_Object *)object1;
SM_Object *obj2 = (SM_Object *)object2;
scene->addPair(obj1, obj2); // Record this collision for client callbacks
// If one of the objects is a ghost then ignore it for the dynamics
if (obj1->isGhost() || obj2->isGhost()) {
return DT_CONTINUE;
}
// Objects do not collide with parent objects
if (obj1->getDynamicParent() == obj2 || obj2->getDynamicParent() == obj1) {
return DT_CONTINUE;
}
if (!obj2->isDynamic()) {
std::swap(obj1, obj2);
}
2002-10-12 11:37:38 +00:00
if (!obj2->isDynamic()) {
return DT_CONTINUE;
}
// Get collision data from SOLID
DT_Vector3 p1, p2;
if (!DT_GetPenDepth(obj1->getObjectHandle(), obj2->getObjectHandle(), p1, p2))
return DT_CONTINUE;
MT_Point3 local1(p1), local2(p2);
MT_Vector3 normal(local2 - local1);
MT_Scalar dist = normal.length();
local1 -= obj1->m_pos, local2 -= obj2->m_pos;
// Calculate collision parameters
MT_Vector3 rel_vel = obj1->getVelocity(local1) + obj1->m_combined_lin_vel -
obj2->getVelocity(local2) - obj2->m_combined_lin_vel;
MT_Scalar restitution =
MT_min(obj1->getMaterialProps()->m_restitution,
obj2->getMaterialProps()->m_restitution);
MT_Scalar friction_factor =
MT_min(obj1->getMaterialProps()->m_friction,
obj2->getMaterialProps()->m_friction);
MT_Scalar invMass = obj1->getInvMass() + obj2->getInvMass();
// Calculate reactions
if (obj1->isDynamic())
obj1->dynamicCollision(local1, normal, dist, rel_vel, restitution, friction_factor, invMass);
if (obj2->isDynamic())
obj2->dynamicCollision(local2, -normal, dist, -rel_vel, restitution, friction_factor, invMass);
return DT_CONTINUE;
}
DT_Bool SM_Object::fix(
void *client_data,
void *object1,
void *object2,
const DT_CollData *coll_data
){
SM_Scene *scene = (SM_Scene *)client_data;
SM_Object *obj1 = (SM_Object *)object1;
SM_Object *obj2 = (SM_Object *)object2;
2002-10-12 11:37:38 +00:00
// If one of the objects is a ghost then ignore it for the dynamics
if (obj1->isGhost() || obj2->isGhost()) {
return DT_CONTINUE;
2002-10-12 11:37:38 +00:00
}
if (obj1->getDynamicParent() == obj2 || obj2->getDynamicParent() == obj1) {
return DT_CONTINUE;
}
2002-10-12 11:37:38 +00:00
if (!obj2->isDynamic()) {
std::swap(obj1, obj2);
}
if (!obj2->isDynamic()) {
return DT_CONTINUE;
2002-10-12 11:37:38 +00:00
}
// obj1 points to a dynamic object
DT_Vector3 p1, p2;
if (!DT_GetPenDepth(obj1->getObjectHandle(), obj2->getObjectHandle(), p1, p2))
return DT_CONTINUE;
MT_Point3 local1(p1), local2(p2);
// Get collision data from SOLID
MT_Vector3 normal(local2 - local1);
2002-10-12 11:37:38 +00:00
// This distinction between dynamic and non-dynamic objects should not be
// necessary. Non-dynamic objects are assumed to have infinite mass.
if (obj1->isDynamic()) {
MT_Vector3 error = normal * 0.5f;
obj1->m_error += error;
obj2->m_error -= error;
// Remove the velocity component in the normal direction
// Calculate collision parameters
MT_Vector3 rel_vel = obj1->getLinearVelocity() - obj2->getLinearVelocity();
if (normal.length() > FixThreshold && rel_vel.length() < FixVelocity) {
normal.normalize();
MT_Scalar rel_vel_normal = 0.49*(normal.dot(rel_vel));
obj1->addLinearVelocity(-rel_vel_normal*normal);
obj2->addLinearVelocity(rel_vel_normal*normal);
2002-10-12 11:37:38 +00:00
}
}
else {
// Same again but now obj1 is non-dynamic
obj2->m_error -= normal;
MT_Vector3 rel_vel = obj2->getLinearVelocity();
if (normal.length() > FixThreshold && rel_vel.length() < FixVelocity) {
// Calculate collision parameters
normal.normalize();
MT_Scalar rel_vel_normal = -0.99*(normal.dot(rel_vel));
obj2->addLinearVelocity(rel_vel_normal*normal);
2002-10-12 11:37:38 +00:00
}
}
return DT_CONTINUE;
2002-10-12 11:37:38 +00:00
}
void SM_Object::relax(void)
{
if (m_error.fuzzyZero())
return;
//std::cout << "SM_Object::relax: { " << m_error << " }" << std::endl;
m_pos += m_error;
m_error.setValue(0., 0., 0.);
/* m_pos.getValue(pos);
DT_SetPosition(m_object, pos);
m_xform.setOrigin(m_pos);
m_xform.getValue(m_ogl_matrix); */
calcXform();
notifyClient();
}
2002-10-12 11:37:38 +00:00
SM_Object::SM_Object(
) {
// warning no initialization of variables done by moto.
}
SM_Object::
~SM_Object() {
if (m_fh_object)
delete m_fh_object;
DT_DestroyObject(m_object);
m_object = NULL;
2002-10-12 11:37:38 +00:00
}
bool
SM_Object::
isDynamic(
) const {
return m_shapeProps != 0;
}
/* nzc experimental. There seem to be two places where kinematics
* are evaluated: proceedKinematic (called from SM_Scene) and
* proceed() in this object. I'll just try and bunge these out for
* now. */
void
SM_Object::
suspend(
){
if (!m_suspended) {
m_suspended = true;
suspendDynamics();
}
}
void
SM_Object::
resume(
) {
if (m_suspended) {
m_suspended = false;
restoreDynamics();
}
}
void
SM_Object::
suspendDynamics(
) {
if (m_shapeProps) {
m_shapePropsBackup = m_shapeProps;
m_shapeProps = 0;
}
}
void
SM_Object::
restoreDynamics(
) {
if (m_shapePropsBackup) {
m_shapeProps = m_shapePropsBackup;
m_shapePropsBackup = 0;
}
}
bool
SM_Object::
isGhost(
) const {
return m_materialProps == 0;
}
void
SM_Object::
suspendMaterial(
) {
if (m_materialProps) {
m_materialPropsBackup = m_materialProps;
m_materialProps = 0;
}
}
void
SM_Object::
restoreMaterial(
) {
if (m_materialPropsBackup) {
m_materialProps = m_materialPropsBackup;
m_materialPropsBackup = 0;
}
}
SM_FhObject *
SM_Object::
getFhObject(
) const {
return m_fh_object;
}
void
SM_Object::
registerCallback(
SM_Callback& callback
) {
m_callbackList.push_back(&callback);
}
// Set the local coordinate system according to the current state
void
SM_Object::
calcXform() {
#ifdef SM_DEBUG_XFORM
printf("SM_Object::calcXform m_pos = { %-0.5f, %-0.5f, %-0.5f }\n",
m_pos[0], m_pos[1], m_pos[2]);
printf(" m_orn = { %-0.5f, %-0.5f, %-0.5f, %-0.5f }\n",
m_orn[0], m_orn[1], m_orn[2], m_orn[3]);
printf(" m_scaling = { %-0.5f, %-0.5f, %-0.5f }\n",
m_scaling[0], m_scaling[1], m_scaling[2]);
#endif
2002-10-12 11:37:38 +00:00
m_xform.setOrigin(m_pos);
m_xform.setBasis(MT_Matrix3x3(m_orn, m_scaling));
m_xform.getValue(m_ogl_matrix);
/* Blender has been known to crash here.
This usually means SM_Object *this has been deleted more than once. */
2002-10-12 11:37:38 +00:00
DT_SetMatrixd(m_object, m_ogl_matrix);
if (m_fh_object) {
m_fh_object->setPosition(m_pos);
m_fh_object->calcXform();
}
#ifdef SM_DEBUG_XFORM
printf("\n | %-0.5f %-0.5f %-0.5f %-0.5f |\n",
m_ogl_matrix[0], m_ogl_matrix[4], m_ogl_matrix[ 8], m_ogl_matrix[12]);
printf( " | %-0.5f %-0.5f %-0.5f %-0.5f |\n",
m_ogl_matrix[1], m_ogl_matrix[5], m_ogl_matrix[ 9], m_ogl_matrix[13]);
printf( "m_ogl_matrix = | %-0.5f %-0.5f %-0.5f %-0.5f |\n",
m_ogl_matrix[2], m_ogl_matrix[6], m_ogl_matrix[10], m_ogl_matrix[14]);
printf( " | %-0.5f %-0.5f %-0.5f %-0.5f |\n\n",
m_ogl_matrix[3], m_ogl_matrix[7], m_ogl_matrix[11], m_ogl_matrix[15]);
#endif
2002-10-12 11:37:38 +00:00
}
// Call callbacks to notify the client of a change of placement
void
SM_Object::
notifyClient() {
T_CallbackList::iterator i;
for (i = m_callbackList.begin(); i != m_callbackList.end(); ++i) {
(*i)->do_me();
}
}
// Save the current state information for use in the velocity computation in the next frame.
void
SM_Object::
proceedKinematic(
MT_Scalar timeStep
) {
/* nzc: need to bunge this for the logic bubbling as well? */
if (!m_suspended) {
m_prev_kinematic = m_kinematic;
if (m_kinematic) {
m_prev_xform = m_xform;
m_timeStep = timeStep;
calcXform();
m_kinematic = false;
}
}
}
void
SM_Object::
saveReactionForce(
MT_Scalar timeStep
) {
if (isDynamic()) {
m_reaction_force = m_reaction_impulse / timeStep;
m_reaction_impulse.setValue(0.0, 0.0, 0.0);
}
}
void
SM_Object::
clearForce(
) {
m_force.setValue(0.0, 0.0, 0.0);
m_torque.setValue(0.0, 0.0, 0.0);
}
void
SM_Object::
clearMomentum(
) {
m_lin_mom.setValue(0.0, 0.0, 0.0);
m_ang_mom.setValue(0.0, 0.0, 0.0);
}
void
SM_Object::
setMargin(
MT_Scalar margin
) {
m_margin = margin;
DT_SetMargin(m_object, margin);
2002-10-12 11:37:38 +00:00
}
MT_Scalar
SM_Object::
getMargin(
) const {
return m_margin;
}
const
SM_MaterialProps *
SM_Object::
getMaterialProps(
) const {
return m_materialProps;
}
const
SM_ShapeProps *
SM_Object::
getShapeProps(
) const {
return m_shapeProps;
}
void
SM_Object::
setPosition(
const MT_Point3& pos
){
m_kinematic = true;
m_pos = pos;
}
void
SM_Object::
setOrientation(
const MT_Quaternion& orn
){
assert(!orn.fuzzyZero());
m_kinematic = true;
m_orn = orn;
}
void
SM_Object::
setScaling(
const MT_Vector3& scaling
){
m_kinematic = true;
m_scaling = scaling;
}
/**
* Functions to handle linear velocity
*/
void
SM_Object::
setExternalLinearVelocity(
const MT_Vector3& lin_vel
) {
m_combined_lin_vel=lin_vel;
}
void
SM_Object::
addExternalLinearVelocity(
const MT_Vector3& lin_vel
) {
m_combined_lin_vel+=lin_vel;
}
void
SM_Object::
addLinearVelocity(
const MT_Vector3& lin_vel
){
m_lin_vel += lin_vel;
if (m_shapeProps) {
m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
}
}
void
SM_Object::
setLinearVelocity(
const MT_Vector3& lin_vel
){
m_lin_vel = lin_vel;
if (m_shapeProps) {
m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
}
}
/**
* Functions to handle angular velocity
*/
void
SM_Object::
setExternalAngularVelocity(
const MT_Vector3& ang_vel
) {
m_combined_ang_vel = ang_vel;
}
void
SM_Object::
addExternalAngularVelocity(
const MT_Vector3& ang_vel
) {
m_combined_ang_vel += ang_vel;
}
void
SM_Object::
setAngularVelocity(
const MT_Vector3& ang_vel
) {
m_ang_vel = ang_vel;
if (m_shapeProps) {
m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
}
}
void
SM_Object::
addAngularVelocity(
const MT_Vector3& ang_vel
) {
m_ang_vel += ang_vel;
if (m_shapeProps) {
m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
}
}
void
SM_Object::
clearCombinedVelocities(
) {
m_combined_lin_vel = MT_Vector3(0,0,0);
m_combined_ang_vel = MT_Vector3(0,0,0);
}
void
SM_Object::
resolveCombinedVelocities(
const MT_Vector3 & lin_vel,
const MT_Vector3 & ang_vel
) {
// Different behaviours for dynamic and non-dynamic
// objects. For non-dynamic we just set the velocity to
// zero. For dynmic the physics velocity has to be
// taken into account. We must make an arbitrary decision
// on how to resolve the 2 velocities. Choices are
// Add the physics velocity to the linear velocity. Objects
// will just keep on moving in the direction they were
// last set in - untill external forces affect them.
// Set the combinbed linear and physics velocity to zero.
// Set the physics velocity in the direction of the set velocity
// zero.
if (isDynamic()) {
#if 1
m_lin_vel += lin_vel;
m_ang_vel += ang_vel;
#else
//compute the component of the physics velocity in the
// direction of the set velocity and set it to zero.
MT_Vector3 lin_vel_norm = lin_vel.normalized();
m_lin_vel -= (m_lin_vel.dot(lin_vel_norm) * lin_vel_norm);
#endif
m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
clearCombinedVelocities();
}
}
MT_Scalar
SM_Object::
getInvMass(
) const {
return m_shapeProps ? 1.0 / m_shapeProps->m_mass : 0.0;
// OPT: cache the result of this division rather than compute it each call
}
MT_Scalar
SM_Object::
getInvInertia(
) const {
return m_shapeProps ? 1.0 / m_shapeProps->m_inertia : 0.0;
// OPT: cache the result of this division rather than compute it each call
}
void
SM_Object::
applyForceField(
const MT_Vector3& accel
) {
if (m_shapeProps) {
m_force += m_shapeProps->m_mass * accel; // F = m * a
}
}
void
SM_Object::
applyCenterForce(
const MT_Vector3& force
) {
m_force += force;
}
void
SM_Object::
applyTorque(
const MT_Vector3& torque
) {
m_torque += torque;
}
void
SM_Object::
applyImpulse(
const MT_Point3& attach, const MT_Vector3& impulse
) {
applyCenterImpulse(impulse); // Change in linear momentum
applyAngularImpulse((attach - m_pos).cross(impulse)); // Change in angular momentump
}
void
SM_Object::
applyCenterImpulse(
const MT_Vector3& impulse
) {
if (m_shapeProps) {
m_lin_mom += impulse;
m_reaction_impulse += impulse;
m_lin_vel = m_lin_mom / m_shapeProps->m_mass;
// The linear velocity is immedialtely updated since otherwise
// simultaneous collisions will get a double impulse.
}
}
void
SM_Object::
applyAngularImpulse(
const MT_Vector3& impulse
) {
if (m_shapeProps) {
m_ang_mom += impulse;
m_ang_vel = m_ang_mom / m_shapeProps->m_inertia;
}
}
MT_Point3
SM_Object::
getWorldCoord(
const MT_Point3& local
) const {
return m_xform(local);
}
MT_Vector3
SM_Object::
getVelocity(
const MT_Point3& local
) const {
// For displaced objects the velocity is faked using the previous state.
// Dynamic objects get their own velocity, not the faked velocity.
// (Dynamic objects shouldn't be displaced in the first place!!)
/* FIXME: -KM- Valgrind report:
==17624== Use of uninitialised value of size 8
==17624== at 0x831F925: MT_Vector3::dot(MT_Vector3 const&) const (MT_Tuple3.h:60)
==17624== by 0x82E4574: SM_Object::getVelocity(MT_Point3 const&) const (MT_Matrix3x3.h:81)
==17624== by 0x82E324D: SM_Object::boing(void*, void*, void*, DT_CollData const*) (SM_Object.cpp:319)
==17624== by 0x83E7308: DT_Encounter::exactTest(DT_RespTable const*, int&) const (in /home/kester/blender-src/DEBUG/blender)
*/
2002-10-12 11:37:38 +00:00
return m_prev_kinematic && !isDynamic() ?
(m_xform(local) - m_prev_xform(local)) / m_timeStep :
m_lin_vel + m_ang_vel.cross(local);
2002-10-12 11:37:38 +00:00
// m_lin_vel + m_ang_vel.cross(m_xform.getBasis() * local);
2002-10-12 11:37:38 +00:00
// NB: m_xform.getBasis() * local == m_xform(local) - m_xform.getOrigin()
}
const
MT_Vector3&
SM_Object::
getReactionForce(
) const {
return m_reaction_force;
}
void
SM_Object::
getMatrix(
double *m
) const {
std::copy(&m_ogl_matrix[0], &m_ogl_matrix[16], &m[0]);
}
const
double *
SM_Object::
getMatrix(
) const {
return m_ogl_matrix;
}
// Still need this???
const
MT_Transform&
SM_Object::
getScaledTransform(
) const {
return m_xform;
}
DT_ObjectHandle
SM_Object::
getObjectHandle(
) const {
return m_object;
}
DT_ShapeHandle
SM_Object::
getShapeHandle(
) const {
return m_shape;
}
SM_Object *
SM_Object::
getDynamicParent(
) {
return m_dynamicParent;
}
void
SM_Object::
setRigidBody(
bool is_rigid_body
) {
m_is_rigid_body = is_rigid_body;
}
bool
SM_Object::
isRigidBody(
) const {
return m_is_rigid_body;
}
const
MT_Vector3
SM_Object::
actualLinVelocity(
) const {
return m_combined_lin_vel + m_lin_vel;
};
const
MT_Vector3
SM_Object::
actualAngVelocity(
) const {
return m_combined_ang_vel + m_ang_vel;
};