BLI_kdtree: refactor to support different numbers of dimensions
This moves logic into kdtree_impl.h which is included in a source file that defines the number of dimensions - so we can easily support different numbers of dimensions as needed (currently 3D and 4D are supported). Macro use isn't so nice but avoids a lot of duplicate code.
This commit is contained in:
912
source/blender/blenlib/intern/kdtree_impl.h
Normal file
912
source/blender/blenlib/intern/kdtree_impl.h
Normal file
@@ -0,0 +1,912 @@
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
/** \file
|
||||
* \ingroup bli
|
||||
*/
|
||||
|
||||
#include "MEM_guardedalloc.h"
|
||||
|
||||
#include "BLI_math.h"
|
||||
#include "BLI_kdtree_impl.h"
|
||||
#include "BLI_utildefines.h"
|
||||
#include "BLI_strict_flags.h"
|
||||
|
||||
#define _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2) MACRO_ARG1 ## MACRO_ARG2
|
||||
#define _CONCAT(MACRO_ARG1, MACRO_ARG2) _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2)
|
||||
#define BLI_kdtree_nd_(id) _CONCAT(KDTREE_PREFIX_ID, _##id)
|
||||
|
||||
typedef struct KDTreeNode_head {
|
||||
uint left, right;
|
||||
float co[KD_DIMS];
|
||||
int index;
|
||||
} KDTreeNode_head;
|
||||
|
||||
typedef struct KDTreeNode {
|
||||
uint left, right;
|
||||
float co[KD_DIMS];
|
||||
int index;
|
||||
uint d; /* range is only (0..KD_DIMS - 1) */
|
||||
} KDTreeNode;
|
||||
|
||||
struct KDTree {
|
||||
KDTreeNode *nodes;
|
||||
uint nodes_len;
|
||||
uint root;
|
||||
#ifdef DEBUG
|
||||
bool is_balanced; /* ensure we call balance first */
|
||||
uint nodes_len_capacity; /* max size of the tree */
|
||||
#endif
|
||||
};
|
||||
|
||||
#define KD_STACK_INIT 100 /* initial size for array (on the stack) */
|
||||
#define KD_NEAR_ALLOC_INC 100 /* alloc increment for collecting nearest */
|
||||
#define KD_FOUND_ALLOC_INC 50 /* alloc increment for collecting nearest */
|
||||
|
||||
#define KD_NODE_UNSET ((uint)-1)
|
||||
|
||||
/** When set we know all values are unbalanced, otherwise clear them when re-balancing: see T62210. */
|
||||
#define KD_NODE_ROOT_IS_INIT ((uint)-2)
|
||||
|
||||
/* -------------------------------------------------------------------- */
|
||||
/** \name Local Math API
|
||||
* \{ */
|
||||
|
||||
static void copy_vn_vn(float v0[KD_DIMS], const float v1[KD_DIMS])
|
||||
{
|
||||
for (uint j = 0; j < KD_DIMS; j++) {
|
||||
v0[j] = v1[j];
|
||||
}
|
||||
}
|
||||
|
||||
static float len_squared_vnvn(const float v0[KD_DIMS], const float v1[KD_DIMS])
|
||||
{
|
||||
float d = 0.0f;
|
||||
for (uint j = 0; j < KD_DIMS; j++) {
|
||||
d += SQUARE(v0[j] - v1[j]);
|
||||
}
|
||||
return d;
|
||||
}
|
||||
|
||||
static float len_squared_vnvn_cb(const float co_kdtree[KD_DIMS], const float co_search[KD_DIMS], const void *UNUSED(user_data))
|
||||
{
|
||||
return len_squared_vnvn(co_kdtree, co_search);
|
||||
}
|
||||
|
||||
/** \} */
|
||||
|
||||
/**
|
||||
* Creates or free a kdtree
|
||||
*/
|
||||
KDTree *BLI_kdtree_nd_(new)(uint nodes_len_capacity)
|
||||
{
|
||||
KDTree *tree;
|
||||
|
||||
tree = MEM_mallocN(sizeof(KDTree), "KDTree");
|
||||
tree->nodes = MEM_mallocN(sizeof(KDTreeNode) * nodes_len_capacity, "KDTreeNode");
|
||||
tree->nodes_len = 0;
|
||||
tree->root = KD_NODE_ROOT_IS_INIT;
|
||||
|
||||
#ifdef DEBUG
|
||||
tree->is_balanced = false;
|
||||
tree->nodes_len_capacity = nodes_len_capacity;
|
||||
#endif
|
||||
|
||||
return tree;
|
||||
}
|
||||
|
||||
void BLI_kdtree_nd_(free)(KDTree *tree)
|
||||
{
|
||||
if (tree) {
|
||||
MEM_freeN(tree->nodes);
|
||||
MEM_freeN(tree);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Construction: first insert points, then call balance. Normal is optional.
|
||||
*/
|
||||
void BLI_kdtree_nd_(insert)(KDTree *tree, int index, const float co[KD_DIMS])
|
||||
{
|
||||
KDTreeNode *node = &tree->nodes[tree->nodes_len++];
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->nodes_len <= tree->nodes_len_capacity);
|
||||
#endif
|
||||
|
||||
/* note, array isn't calloc'd,
|
||||
* need to initialize all struct members */
|
||||
|
||||
node->left = node->right = KD_NODE_UNSET;
|
||||
copy_vn_vn(node->co, co);
|
||||
node->index = index;
|
||||
node->d = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
tree->is_balanced = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
static uint kdtree_balance(KDTreeNode *nodes, uint nodes_len, uint axis, const uint ofs)
|
||||
{
|
||||
KDTreeNode *node;
|
||||
float co;
|
||||
uint left, right, median, i, j;
|
||||
|
||||
if (nodes_len <= 0) {
|
||||
return KD_NODE_UNSET;
|
||||
}
|
||||
else if (nodes_len == 1) {
|
||||
return 0 + ofs;
|
||||
}
|
||||
|
||||
/* quicksort style sorting around median */
|
||||
left = 0;
|
||||
right = nodes_len - 1;
|
||||
median = nodes_len / 2;
|
||||
|
||||
while (right > left) {
|
||||
co = nodes[right].co[axis];
|
||||
i = left - 1;
|
||||
j = right;
|
||||
|
||||
while (1) {
|
||||
while (nodes[++i].co[axis] < co) { /* pass */ }
|
||||
while (nodes[--j].co[axis] > co && j > left) { /* pass */ }
|
||||
|
||||
if (i >= j) {
|
||||
break;
|
||||
}
|
||||
|
||||
SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[j]);
|
||||
}
|
||||
|
||||
SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[right]);
|
||||
if (i >= median) {
|
||||
right = i - 1;
|
||||
}
|
||||
if (i <= median) {
|
||||
left = i + 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* set node and sort subnodes */
|
||||
node = &nodes[median];
|
||||
node->d = axis;
|
||||
axis = (axis + 1) % KD_DIMS;
|
||||
node->left = kdtree_balance(nodes, median, axis, ofs);
|
||||
node->right = kdtree_balance(nodes + median + 1, (nodes_len - (median + 1)), axis, (median + 1) + ofs);
|
||||
|
||||
return median + ofs;
|
||||
}
|
||||
|
||||
void BLI_kdtree_nd_(balance)(KDTree *tree)
|
||||
{
|
||||
if (tree->root != KD_NODE_ROOT_IS_INIT) {
|
||||
for (uint i = 0; i < tree->nodes_len; i++) {
|
||||
tree->nodes[i].left = KD_NODE_UNSET;
|
||||
tree->nodes[i].right = KD_NODE_UNSET;
|
||||
}
|
||||
}
|
||||
|
||||
tree->root = kdtree_balance(tree->nodes, tree->nodes_len, 0, 0);
|
||||
|
||||
#ifdef DEBUG
|
||||
tree->is_balanced = true;
|
||||
#endif
|
||||
}
|
||||
|
||||
static uint *realloc_nodes(uint *stack, uint *stack_len_capacity, const bool is_alloc)
|
||||
{
|
||||
uint *stack_new = MEM_mallocN((*stack_len_capacity + KD_NEAR_ALLOC_INC) * sizeof(uint), "KDTree.treestack");
|
||||
memcpy(stack_new, stack, *stack_len_capacity * sizeof(uint));
|
||||
// memset(stack_new + *stack_len_capacity, 0, sizeof(uint) * KD_NEAR_ALLOC_INC);
|
||||
if (is_alloc) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
*stack_len_capacity += KD_NEAR_ALLOC_INC;
|
||||
return stack_new;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find nearest returns index, and -1 if no node is found.
|
||||
*/
|
||||
int BLI_kdtree_nd_(find_nearest)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
KDTreeNearest *r_nearest)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
const KDTreeNode *root, *min_node;
|
||||
uint *stack, stack_default[KD_STACK_INIT];
|
||||
float min_dist, cur_dist;
|
||||
uint stack_len_capacity, cur = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->is_balanced == true);
|
||||
#endif
|
||||
|
||||
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
stack = stack_default;
|
||||
stack_len_capacity = KD_STACK_INIT;
|
||||
|
||||
root = &nodes[tree->root];
|
||||
min_node = root;
|
||||
min_dist = len_squared_vnvn(root->co, co);
|
||||
|
||||
if (co[root->d] < root->co[root->d]) {
|
||||
if (root->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->right;
|
||||
}
|
||||
if (root->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->left;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (root->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->left;
|
||||
}
|
||||
if (root->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->right;
|
||||
}
|
||||
}
|
||||
|
||||
while (cur--) {
|
||||
const KDTreeNode *node = &nodes[stack[cur]];
|
||||
|
||||
cur_dist = node->co[node->d] - co[node->d];
|
||||
|
||||
if (cur_dist < 0.0f) {
|
||||
cur_dist = -cur_dist * cur_dist;
|
||||
|
||||
if (-cur_dist < min_dist) {
|
||||
cur_dist = len_squared_vnvn(node->co, co);
|
||||
if (cur_dist < min_dist) {
|
||||
min_dist = cur_dist;
|
||||
min_node = node;
|
||||
}
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
else {
|
||||
cur_dist = cur_dist * cur_dist;
|
||||
|
||||
if (cur_dist < min_dist) {
|
||||
cur_dist = len_squared_vnvn(node->co, co);
|
||||
if (cur_dist < min_dist) {
|
||||
min_dist = cur_dist;
|
||||
min_node = node;
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
|
||||
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
|
||||
}
|
||||
}
|
||||
|
||||
if (r_nearest) {
|
||||
r_nearest->index = min_node->index;
|
||||
r_nearest->dist = sqrtf(min_dist);
|
||||
copy_vn_vn(r_nearest->co, min_node->co);
|
||||
}
|
||||
|
||||
if (stack != stack_default) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
|
||||
return min_node->index;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A version of #BLI_kdtree_find_nearest which runs a callback
|
||||
* to filter out values.
|
||||
*
|
||||
* \param filter_cb: Filter find results,
|
||||
* Return codes: (1: accept, 0: skip, -1: immediate exit).
|
||||
*/
|
||||
int BLI_kdtree_nd_(find_nearest_cb)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
int (*filter_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq), void *user_data,
|
||||
KDTreeNearest *r_nearest)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
const KDTreeNode *min_node = NULL;
|
||||
|
||||
uint *stack, stack_default[KD_STACK_INIT];
|
||||
float min_dist = FLT_MAX, cur_dist;
|
||||
uint stack_len_capacity, cur = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->is_balanced == true);
|
||||
#endif
|
||||
|
||||
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
stack = stack_default;
|
||||
stack_len_capacity = ARRAY_SIZE(stack_default);
|
||||
|
||||
#define NODE_TEST_NEAREST(node) \
|
||||
{ \
|
||||
const float dist_sq = len_squared_vnvn((node)->co, co); \
|
||||
if (dist_sq < min_dist) { \
|
||||
const int result = filter_cb(user_data, (node)->index, (node)->co, dist_sq); \
|
||||
if (result == 1) { \
|
||||
min_dist = dist_sq; \
|
||||
min_node = node; \
|
||||
} \
|
||||
else if (result == 0) { \
|
||||
/* pass */ \
|
||||
} \
|
||||
else { \
|
||||
BLI_assert(result == -1); \
|
||||
goto finally; \
|
||||
} \
|
||||
} \
|
||||
} ((void)0)
|
||||
|
||||
stack[cur++] = tree->root;
|
||||
|
||||
while (cur--) {
|
||||
const KDTreeNode *node = &nodes[stack[cur]];
|
||||
|
||||
cur_dist = node->co[node->d] - co[node->d];
|
||||
|
||||
if (cur_dist < 0.0f) {
|
||||
cur_dist = -cur_dist * cur_dist;
|
||||
|
||||
if (-cur_dist < min_dist) {
|
||||
NODE_TEST_NEAREST(node);
|
||||
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
else {
|
||||
cur_dist = cur_dist * cur_dist;
|
||||
|
||||
if (cur_dist < min_dist) {
|
||||
NODE_TEST_NEAREST(node);
|
||||
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
|
||||
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
|
||||
}
|
||||
}
|
||||
|
||||
#undef NODE_TEST_NEAREST
|
||||
|
||||
|
||||
finally:
|
||||
if (stack != stack_default) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
|
||||
if (min_node) {
|
||||
if (r_nearest) {
|
||||
r_nearest->index = min_node->index;
|
||||
r_nearest->dist = sqrtf(min_dist);
|
||||
copy_vn_vn(r_nearest->co, min_node->co);
|
||||
}
|
||||
|
||||
return min_node->index;
|
||||
}
|
||||
else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static void nearest_ordered_insert(
|
||||
KDTreeNearest *nearest, uint *nearest_len, const uint nearest_len_capacity,
|
||||
const int index, const float dist, const float co[KD_DIMS])
|
||||
{
|
||||
uint i;
|
||||
|
||||
if (*nearest_len < nearest_len_capacity) {
|
||||
(*nearest_len)++;
|
||||
}
|
||||
|
||||
for (i = *nearest_len - 1; i > 0; i--) {
|
||||
if (dist >= nearest[i - 1].dist) {
|
||||
break;
|
||||
}
|
||||
else {
|
||||
nearest[i] = nearest[i - 1];
|
||||
}
|
||||
}
|
||||
|
||||
nearest[i].index = index;
|
||||
nearest[i].dist = dist;
|
||||
copy_vn_vn(nearest[i].co, co);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find \a nearest_len_capacity nearest returns number of points found, with results in nearest.
|
||||
*
|
||||
* \param r_nearest: An array of nearest, sized at least \a nearest_len_capacity.
|
||||
*/
|
||||
int BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
KDTreeNearest r_nearest[],
|
||||
const uint nearest_len_capacity,
|
||||
float (*len_sq_fn)(const float co_search[KD_DIMS], const float co_test[KD_DIMS], const void *user_data),
|
||||
const void *user_data)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
const KDTreeNode *root;
|
||||
uint *stack, stack_default[KD_STACK_INIT];
|
||||
float cur_dist;
|
||||
uint stack_len_capacity, cur = 0;
|
||||
uint i, nearest_len = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->is_balanced == true);
|
||||
#endif
|
||||
|
||||
if (UNLIKELY((tree->root == KD_NODE_UNSET) || nearest_len_capacity == 0)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (len_sq_fn == NULL) {
|
||||
len_sq_fn = len_squared_vnvn_cb;
|
||||
BLI_assert(user_data == NULL);
|
||||
}
|
||||
|
||||
stack = stack_default;
|
||||
stack_len_capacity = ARRAY_SIZE(stack_default);
|
||||
|
||||
root = &nodes[tree->root];
|
||||
|
||||
cur_dist = len_sq_fn(co, root->co, user_data);
|
||||
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, root->index, cur_dist, root->co);
|
||||
|
||||
if (co[root->d] < root->co[root->d]) {
|
||||
if (root->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->right;
|
||||
}
|
||||
if (root->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->left;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (root->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->left;
|
||||
}
|
||||
if (root->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = root->right;
|
||||
}
|
||||
}
|
||||
|
||||
while (cur--) {
|
||||
const KDTreeNode *node = &nodes[stack[cur]];
|
||||
|
||||
cur_dist = node->co[node->d] - co[node->d];
|
||||
|
||||
if (cur_dist < 0.0f) {
|
||||
cur_dist = -cur_dist * cur_dist;
|
||||
|
||||
if (nearest_len < nearest_len_capacity || -cur_dist < r_nearest[nearest_len - 1].dist) {
|
||||
cur_dist = len_sq_fn(co, node->co, user_data);
|
||||
|
||||
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
|
||||
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
|
||||
}
|
||||
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
else {
|
||||
cur_dist = cur_dist * cur_dist;
|
||||
|
||||
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
|
||||
cur_dist = len_sq_fn(co, node->co, user_data);
|
||||
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
|
||||
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
|
||||
}
|
||||
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
|
||||
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < nearest_len; i++) {
|
||||
r_nearest[i].dist = sqrtf(r_nearest[i].dist);
|
||||
}
|
||||
|
||||
if (stack != stack_default) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
|
||||
return (int)nearest_len;
|
||||
}
|
||||
|
||||
int BLI_kdtree_nd_(find_nearest_n)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
KDTreeNearest r_nearest[],
|
||||
const uint nearest_len_capacity)
|
||||
{
|
||||
return BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
|
||||
tree, co, r_nearest, nearest_len_capacity,
|
||||
NULL, NULL);
|
||||
}
|
||||
|
||||
static int nearest_cmp_dist(const void *a, const void *b)
|
||||
{
|
||||
const KDTreeNearest *kda = a;
|
||||
const KDTreeNearest *kdb = b;
|
||||
|
||||
if (kda->dist < kdb->dist) {
|
||||
return -1;
|
||||
}
|
||||
else if (kda->dist > kdb->dist) {
|
||||
return 1;
|
||||
}
|
||||
else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
static void nearest_add_in_range(
|
||||
KDTreeNearest **r_nearest,
|
||||
uint nearest_index,
|
||||
uint *nearest_len_capacity,
|
||||
const int index, const float dist, const float co[KD_DIMS])
|
||||
{
|
||||
KDTreeNearest *to;
|
||||
|
||||
if (UNLIKELY(nearest_index >= *nearest_len_capacity)) {
|
||||
*r_nearest = MEM_reallocN_id(
|
||||
*r_nearest,
|
||||
(*nearest_len_capacity += KD_FOUND_ALLOC_INC) * sizeof(KDTreeNode),
|
||||
__func__);
|
||||
}
|
||||
|
||||
to = (*r_nearest) + nearest_index;
|
||||
|
||||
to->index = index;
|
||||
to->dist = sqrtf(dist);
|
||||
copy_vn_vn(to->co, co);
|
||||
}
|
||||
|
||||
/**
|
||||
* Range search returns number of points nearest_len, with results in nearest
|
||||
*
|
||||
* \param r_nearest: Allocated array of nearest nearest_len (caller is responsible for freeing).
|
||||
*/
|
||||
int BLI_kdtree_nd_(range_search_with_len_squared_cb)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
KDTreeNearest **r_nearest, const float range,
|
||||
float (*len_sq_fn)(const float co_search[KD_DIMS], const float co_test[KD_DIMS], const void *user_data),
|
||||
const void *user_data)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
uint *stack, stack_default[KD_STACK_INIT];
|
||||
KDTreeNearest *nearest = NULL;
|
||||
const float range_sq = range * range;
|
||||
float dist_sq;
|
||||
uint stack_len_capacity, cur = 0;
|
||||
uint nearest_len = 0, nearest_len_capacity = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->is_balanced == true);
|
||||
#endif
|
||||
|
||||
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (len_sq_fn == NULL) {
|
||||
len_sq_fn = len_squared_vnvn_cb;
|
||||
BLI_assert(user_data == NULL);
|
||||
}
|
||||
|
||||
stack = stack_default;
|
||||
stack_len_capacity = ARRAY_SIZE(stack_default);
|
||||
|
||||
stack[cur++] = tree->root;
|
||||
|
||||
while (cur--) {
|
||||
const KDTreeNode *node = &nodes[stack[cur]];
|
||||
|
||||
if (co[node->d] + range < node->co[node->d]) {
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
else if (co[node->d] - range > node->co[node->d]) {
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
else {
|
||||
dist_sq = len_sq_fn(co, node->co, user_data);
|
||||
if (dist_sq <= range_sq) {
|
||||
nearest_add_in_range(&nearest, nearest_len++, &nearest_len_capacity, node->index, dist_sq, node->co);
|
||||
}
|
||||
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
|
||||
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
|
||||
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
|
||||
}
|
||||
}
|
||||
|
||||
if (stack != stack_default) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
|
||||
if (nearest_len) {
|
||||
qsort(nearest, nearest_len, sizeof(KDTreeNearest), nearest_cmp_dist);
|
||||
}
|
||||
|
||||
*r_nearest = nearest;
|
||||
|
||||
return (int)nearest_len;
|
||||
}
|
||||
|
||||
int BLI_kdtree_nd_(range_search)(
|
||||
const KDTree *tree, const float co[KD_DIMS],
|
||||
KDTreeNearest **r_nearest, const float range)
|
||||
{
|
||||
return BLI_kdtree_nd_(range_search_with_len_squared_cb)(
|
||||
tree, co, r_nearest, range,
|
||||
NULL, NULL);
|
||||
}
|
||||
|
||||
/**
|
||||
* A version of #BLI_kdtree_range_search which runs a callback
|
||||
* instead of allocating an array.
|
||||
*
|
||||
* \param search_cb: Called for every node found in \a range, false return value performs an early exit.
|
||||
*
|
||||
* \note the order of calls isn't sorted based on distance.
|
||||
*/
|
||||
void BLI_kdtree_nd_(range_search_cb)(
|
||||
const KDTree *tree, const float co[KD_DIMS], float range,
|
||||
bool (*search_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq), void *user_data)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
|
||||
uint *stack, stack_default[KD_STACK_INIT];
|
||||
float range_sq = range * range, dist_sq;
|
||||
uint stack_len_capacity, cur = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
BLI_assert(tree->is_balanced == true);
|
||||
#endif
|
||||
|
||||
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
|
||||
return;
|
||||
}
|
||||
|
||||
stack = stack_default;
|
||||
stack_len_capacity = ARRAY_SIZE(stack_default);
|
||||
|
||||
stack[cur++] = tree->root;
|
||||
|
||||
while (cur--) {
|
||||
const KDTreeNode *node = &nodes[stack[cur]];
|
||||
|
||||
if (co[node->d] + range < node->co[node->d]) {
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
}
|
||||
else if (co[node->d] - range > node->co[node->d]) {
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
else {
|
||||
dist_sq = len_squared_vnvn(node->co, co);
|
||||
if (dist_sq <= range_sq) {
|
||||
if (search_cb(user_data, node->index, node->co, dist_sq) == false) {
|
||||
goto finally;
|
||||
}
|
||||
}
|
||||
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->left;
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
stack[cur++] = node->right;
|
||||
}
|
||||
}
|
||||
|
||||
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
|
||||
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
|
||||
}
|
||||
}
|
||||
|
||||
finally:
|
||||
if (stack != stack_default) {
|
||||
MEM_freeN(stack);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Use when we want to loop over nodes ordered by index.
|
||||
* Requires indices to be aligned with nodes.
|
||||
*/
|
||||
static uint *kdtree_order(const KDTree *tree)
|
||||
{
|
||||
const KDTreeNode *nodes = tree->nodes;
|
||||
uint *order = MEM_mallocN(sizeof(uint) * tree->nodes_len, __func__);
|
||||
for (uint i = 0; i < tree->nodes_len; i++) {
|
||||
order[nodes[i].index] = i;
|
||||
}
|
||||
return order;
|
||||
}
|
||||
|
||||
/* -------------------------------------------------------------------- */
|
||||
/** \name BLI_kdtree_calc_duplicates_fast
|
||||
* \{ */
|
||||
|
||||
struct DeDuplicateParams {
|
||||
/* Static */
|
||||
const KDTreeNode *nodes;
|
||||
float range;
|
||||
float range_sq;
|
||||
int *duplicates;
|
||||
int *duplicates_found;
|
||||
|
||||
/* Per Search */
|
||||
float search_co[KD_DIMS];
|
||||
int search;
|
||||
};
|
||||
|
||||
static void deduplicate_recursive(const struct DeDuplicateParams *p, uint i)
|
||||
{
|
||||
const KDTreeNode *node = &p->nodes[i];
|
||||
if (p->search_co[node->d] + p->range <= node->co[node->d]) {
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
deduplicate_recursive(p, node->left);
|
||||
}
|
||||
}
|
||||
else if (p->search_co[node->d] - p->range >= node->co[node->d]) {
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
deduplicate_recursive(p, node->right);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ((p->search != node->index) && (p->duplicates[node->index] == -1)) {
|
||||
if (len_squared_vnvn(node->co, p->search_co) <= p->range_sq) {
|
||||
p->duplicates[node->index] = (int)p->search;
|
||||
*p->duplicates_found += 1;
|
||||
}
|
||||
}
|
||||
if (node->left != KD_NODE_UNSET) {
|
||||
deduplicate_recursive(p, node->left);
|
||||
}
|
||||
if (node->right != KD_NODE_UNSET) {
|
||||
deduplicate_recursive(p, node->right);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find duplicate points in \a range.
|
||||
* Favors speed over quality since it doesn't find the best target vertex for merging.
|
||||
* Nodes are looped over, duplicates are added when found.
|
||||
* Nevertheless results are predictable.
|
||||
*
|
||||
* \param range: Coordinates in this range are candidates to be merged.
|
||||
* \param use_index_order: Loop over the coordinates ordered by #KDTreeNode.index
|
||||
* At the expense of some performance, this ensures the layout of the tree doesn't influence
|
||||
* the iteration order.
|
||||
* \param duplicates: An array of int's the length of #KDTree.nodes_len
|
||||
* Values initialized to -1 are candidates to me merged.
|
||||
* Setting the index to it's own position in the array prevents it from being touched,
|
||||
* although it can still be used as a target.
|
||||
* \returns The number of merges found (includes any merges already in the \a duplicates array).
|
||||
*
|
||||
* \note Merging is always a single step (target indices wont be marked for merging).
|
||||
*/
|
||||
int BLI_kdtree_nd_(calc_duplicates_fast)(
|
||||
const KDTree *tree, const float range, bool use_index_order,
|
||||
int *duplicates)
|
||||
{
|
||||
int found = 0;
|
||||
struct DeDuplicateParams p = {
|
||||
.nodes = tree->nodes,
|
||||
.range = range,
|
||||
.range_sq = SQUARE(range),
|
||||
.duplicates = duplicates,
|
||||
.duplicates_found = &found,
|
||||
};
|
||||
|
||||
if (use_index_order) {
|
||||
uint *order = kdtree_order(tree);
|
||||
for (uint i = 0; i < tree->nodes_len; i++) {
|
||||
const uint node_index = order[i];
|
||||
const int index = (int)i;
|
||||
if (ELEM(duplicates[index], -1, index)) {
|
||||
p.search = index;
|
||||
copy_vn_vn(p.search_co, tree->nodes[node_index].co);
|
||||
int found_prev = found;
|
||||
deduplicate_recursive(&p, tree->root);
|
||||
if (found != found_prev) {
|
||||
/* Prevent chains of doubles. */
|
||||
duplicates[index] = index;
|
||||
}
|
||||
}
|
||||
}
|
||||
MEM_freeN(order);
|
||||
}
|
||||
else {
|
||||
for (uint i = 0; i < tree->nodes_len; i++) {
|
||||
const uint node_index = i;
|
||||
const int index = p.nodes[node_index].index;
|
||||
if (ELEM(duplicates[index], -1, index)) {
|
||||
p.search = index;
|
||||
copy_vn_vn(p.search_co, tree->nodes[node_index].co);
|
||||
int found_prev = found;
|
||||
deduplicate_recursive(&p, tree->root);
|
||||
if (found != found_prev) {
|
||||
/* Prevent chains of doubles. */
|
||||
duplicates[index] = index;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return found;
|
||||
}
|
||||
|
||||
/** \} */
|
||||
Reference in New Issue
Block a user