Fix T87779: Asymmetric vertex positions in circles primitives

Add sin_cos_from_fraction which ensures each quadrant has matching
values when their sign is flipped.
This commit is contained in:
2022-07-22 13:57:04 +10:00
parent 08c5d99e88
commit 087f27a52f
3 changed files with 83 additions and 14 deletions

View File

@@ -176,6 +176,26 @@ void mat3_to_quat_is_ok(float q[4], const float mat[3][3]);
/* Other. */
/**
* Utility function that performs `sinf` & `cosf` where the quadrants of the circle
* will have exactly matching values when their sign is flipped.
* This works as long as the denominator can be divided by 2 or 4,
* otherwise `sinf` & `cosf` are used without any additional logic.
*
* Besides adjustments to precision, this function is the equivalent of:
* \code {.c}
* float phi = (2 * M_PI) * (float)i / (float)denominator;
* *r_sin = sinf(phi);
* *r_cos = cosf(phi);
* \endcode
*
* \param numerator: An integer factor in [0..denominator] (inclusive).
* \param denominator: The faction denominator (typically the number of segments of the circle).
* \param r_sin: The resulting sine.
* \param r_cos: The resulting cosine.
*/
void sin_cos_from_fraction(const int numerator, const int denominator, float *r_sin, float *r_cos);
void print_qt(const char *str, const float q[4]);
#define print_qt_id(q) print_qt(STRINGIFY(q), q)

View File

@@ -915,6 +915,55 @@ float tri_to_quat(float q[4], const float a[3], const float b[3], const float c[
return len;
}
void sin_cos_from_fraction(const int numerator, const int denominator, float *r_sin, float *r_cos)
{
BLI_assert((numerator <= denominator) && (denominator > 0));
if ((denominator & 3) == 0) {
const int denominator_4 = denominator / 4;
if (numerator <= denominator_4) {
/* Fall through. */
}
else {
if (numerator <= denominator_4 * 2) {
const float phi = (float)(2.0 * M_PI) *
((float)(numerator - denominator_4) / (float)denominator);
*r_sin = cosf(phi);
*r_cos = -sinf(phi);
}
else if (numerator <= denominator_4 * 3) {
const float phi = (float)(2.0 * M_PI) *
((float)(numerator - (denominator_4 * 2)) / (float)denominator);
*r_sin = -sinf(phi);
*r_cos = -cosf(phi);
}
else {
const float phi = (float)(2.0 * M_PI) *
((float)(numerator - (denominator_4 * 3)) / (float)denominator);
*r_cos = sinf(phi);
*r_sin = -cosf(phi);
}
return;
}
}
else if ((denominator & 1) == 0) {
const int denominator_2 = denominator / 2;
if (numerator <= denominator_2) {
/* Fall through. */
}
else {
const float phi = (float)(2.0 * M_PI) *
((float)(numerator - denominator_2) / (float)denominator);
*r_sin = -sinf(phi);
*r_cos = -cosf(phi);
return;
}
}
const float phi = (float)(2.0 * M_PI) * ((float)numerator / (float)denominator);
*r_sin = sinf(phi);
*r_cos = cosf(phi);
}
void print_qt(const char *str, const float q[4])
{
printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]);

View File

@@ -855,12 +855,12 @@ void bmo_create_uvsphere_exec(BMesh *bm, BMOperator *op)
/* one segment first */
for (a = 0; a <= tot; a++) {
/* Going in this direction, then edge extruding, makes normals face outward */
/* Calculate with doubles for higher precision, see: T87779. */
const float phi = M_PI * ((double)a / (double)tot);
float sin_phi, cos_phi;
sin_cos_from_fraction(a, tot, &sin_phi, &cos_phi);
vec[0] = 0.0;
vec[1] = rad * sinf(phi);
vec[2] = rad * cosf(phi);
vec[1] = rad * sin_phi;
vec[2] = rad * cos_phi;
eve = BM_vert_create(bm, vec, NULL, BM_CREATE_NOP);
BMO_vert_flag_enable(bm, eve, VERT_MARK);
@@ -1262,11 +1262,9 @@ void bmo_create_circle_exec(BMesh *bm, BMOperator *op)
for (a = 0; a < segs; a++) {
/* Going this way ends up with normal(s) upward */
/* Calculate with doubles for higher precision, see: T87779. */
const float phi = (2.0 * M_PI) * ((double)a / (double)segs);
vec[0] = -radius * sinf(phi);
vec[1] = radius * cosf(phi);
sin_cos_from_fraction(a, segs, &vec[0], &vec[1]);
vec[0] *= -radius;
vec[1] *= radius;
vec[2] = 0.0f;
mul_m4_v3(mat, vec);
v1 = BM_vert_create(bm, vec, NULL, BM_CREATE_NOP);
@@ -1394,15 +1392,17 @@ void bmo_create_cone_exec(BMesh *bm, BMOperator *op)
for (int i = 0; i < segs; i++) {
/* Calculate with doubles for higher precision, see: T87779. */
const float phi = (2.0 * M_PI) * ((double)i / (double)segs);
vec[0] = rad1 * sinf(phi);
vec[1] = rad1 * cosf(phi);
float sin_phi, cos_phi;
sin_cos_from_fraction(i, segs, &sin_phi, &cos_phi);
vec[0] = rad1 * sin_phi;
vec[1] = rad1 * cos_phi;
vec[2] = -depth_half;
mul_m4_v3(mat, vec);
v1 = BM_vert_create(bm, vec, NULL, BM_CREATE_NOP);
vec[0] = rad2 * sinf(phi);
vec[1] = rad2 * cosf(phi);
vec[0] = rad2 * sin_phi;
vec[1] = rad2 * cos_phi;
vec[2] = depth_half;
mul_m4_v3(mat, vec);
v2 = BM_vert_create(bm, vec, NULL, BM_CREATE_NOP);