Mathutils refactor & include in sphinx generated docs, (TODO, include getset'ers in docs)

- Mathutils.MidpointVecs --> vector.lerp(other, fac)
 - Mathutils.AngleBetweenVecs --> vector.angle(other)
 - Mathutils.ProjectVecs --> vector.project(other)
 - Mathutils.DifferenceQuats --> quat.difference(other)
 - Mathutils.Slerp --> quat.slerp(other, fac)
 - Mathutils.Rand: removed, use pythons random module
 - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
 - Matrix.scalePart --> Matrix.scale_part
 - Matrix.translationPart --> Matrix.translation_part
 - Matrix.rotationPart --> Matrix.rotation_part
 - toMatrix --> to_matrix
 - toEuler --> to_euler
 - toQuat --> to_quat
 - Vector.toTrackQuat --> Vector.to_track_quat
This commit is contained in:
2010-01-25 09:44:04 +00:00
parent eed13d859b
commit 0a0f4c9d81
26 changed files with 1540 additions and 1714 deletions

View File

@@ -47,19 +47,14 @@
#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
#define eps 0.000001
/*-- forward declarations -- */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq );
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_ClosestPointOnLine( PyObject * self, PyObject * args );
static PyObject *M_Geometry_PointInTriangle2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_PointInQuad2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BezierInterp( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BarycentricTransform( PyObject * self, PyObject * args );
/*-------------------------DOC STRINGS ---------------------------*/
static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
static char M_Geometry_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
static char M_Geometry_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
static char M_Geometry_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
static char M_Geometry_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
static char M_Geometry_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
static char M_Geometry_ClosestPointOnLine_doc[] = "(pt, line_p1, line_p2) - takes a point and a line and returns a (Vector, float) for the point on the line, and the bool so you can know if the point was between the 2 points";
@@ -67,40 +62,280 @@ static char M_Geometry_PointInTriangle2D_doc[] = "(pt, tri_p1, tri_p2, tri_p3) -
static char M_Geometry_PointInQuad2D_doc[] = "(pt, quad_p1, quad_p2, quad_p3, quad_p4) - takes 5 vectors, one is the point and the next 4 define the quad, only the x and y are used from the vectors";
static char M_Geometry_BoxPack2D_doc[] = "";
static char M_Geometry_BezierInterp_doc[] = "";
/*-----------------------METHOD DEFINITIONS ----------------------*/
struct PyMethodDef M_Geometry_methods[] = {
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
{"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
"Geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyObject *Geometry_Init(void)
//---------------------------------INTERSECTION FUNCTIONS--------------------
//----------------------------------Mathutils.Intersect() -------------------
static PyObject *M_Geometry_Intersect( PyObject * self, PyObject * args )
{
PyObject *submodule;
submodule = PyModule_Create(&M_Geometry_module_def);
PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
return (submodule);
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
int clip = 1;
if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
return NULL;
}
if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(dir, ray->vec);
normalize_v3(dir);
VECCOPY(orig, ray_off->vec);
/* find vectors for two edges sharing v1 */
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
/* begin calculating determinant - also used to calculated U parameter */
cross_v3_v3v3(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
det = dot_v3v3(e1, pvec);
if (det > -0.000001 && det < 0.000001) {
Py_RETURN_NONE;
}
inv_det = 1.0f / det;
/* calculate distance from v1 to ray origin */
sub_v3_v3v3(tvec, orig, v1);
/* calculate U parameter and test bounds */
u = dot_v3v3(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
/* prepare to test the V parameter */
cross_v3_v3v3(qvec, tvec, e1);
/* calculate V parameter and test bounds */
v = dot_v3v3(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
t = dot_v3v3(e2, qvec) * inv_det;
mul_v3_fl(dir, t);
add_v3_v3v3(pvec, orig, dir);
return newVectorObject(pvec, 3, Py_NEW, NULL);
}
//----------------------------------Mathutils.LineIntersect() -------------------
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
static PyObject *M_Geometry_LineIntersect( PyObject * self, PyObject * args )
{
PyObject * tuple;
VectorObject *vec1, *vec2, *vec3, *vec4;
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec3->size != vec2->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
return NULL;
if( vec1->size == 3 || vec1->size == 2) {
int result;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
}
else {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v1[2] = 0.0f;
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v2[2] = 0.0f;
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
v3[2] = 0.0f;
v4[0] = vec4->vec[0];
v4[1] = vec4->vec[1];
v4[2] = 0.0f;
}
result = isect_line_line_v3(v1, v2, v3, v4, i1, i2);
if (result == 0) {
/* colinear */
Py_RETURN_NONE;
}
else {
tuple = PyTuple_New( 2 );
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
return tuple;
}
}
else {
PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" );
return NULL;
}
}
//---------------------------------NORMALS FUNCTIONS--------------------
//----------------------------------Mathutils.QuadNormal() -------------------
static PyObject *M_Geometry_QuadNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1;
VectorObject *vec2;
VectorObject *vec3;
VectorObject *vec4;
float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
/* find vectors for two edges sharing v2 */
sub_v3_v3v3(e1, v1, v2);
sub_v3_v3v3(e2, v3, v2);
cross_v3_v3v3(n1, e2, e1);
normalize_v3(n1);
/* find vectors for two edges sharing v4 */
sub_v3_v3v3(e1, v3, v4);
sub_v3_v3v3(e2, v1, v4);
cross_v3_v3v3(n2, e2, e1);
normalize_v3(n2);
/* adding and averaging the normals of both triangles */
add_v3_v3v3(n1, n2, n1);
normalize_v3(n1);
return newVectorObject(n1, 3, Py_NEW, NULL);
}
//----------------------------Mathutils.TriangleNormal() -------------------
static PyObject *M_Geometry_TriangleNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
/* find vectors for two edges sharing v2 */
sub_v3_v3v3(e1, v1, v2);
sub_v3_v3v3(e2, v3, v2);
cross_v3_v3v3(n, e2, e1);
normalize_v3(n);
return newVectorObject(n, 3, Py_NEW, NULL);
}
//--------------------------------- AREA FUNCTIONS--------------------
//----------------------------------Mathutils.TriangleArea() -------------------
static PyObject *M_Geometry_TriangleArea( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3];
if( !PyArg_ParseTuple
( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n");
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
return NULL;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
return PyFloat_FromDouble( area_tri_v3(v1, v2, v3) );
}
else if (vec1->size == 2) {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
return PyFloat_FromDouble( area_tri_v2(v1, v2, v3) );
}
else {
PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" );
return NULL;
}
}
/*----------------------------------Geometry.PolyFill() -------------------*/
@@ -569,3 +804,43 @@ static PyObject *M_Geometry_BarycentricTransform(PyObject * self, PyObject * arg
return newVectorObject(vec, 3, Py_NEW, NULL);
}
struct PyMethodDef M_Geometry_methods[] = {
{"Intersect", ( PyCFunction ) M_Geometry_Intersect, METH_VARARGS, M_Geometry_Intersect_doc},
{"TriangleArea", ( PyCFunction ) M_Geometry_TriangleArea, METH_VARARGS, M_Geometry_TriangleArea_doc},
{"TriangleNormal", ( PyCFunction ) M_Geometry_TriangleNormal, METH_VARARGS, M_Geometry_TriangleNormal_doc},
{"QuadNormal", ( PyCFunction ) M_Geometry_QuadNormal, METH_VARARGS, M_Geometry_QuadNormal_doc},
{"LineIntersect", ( PyCFunction ) M_Geometry_LineIntersect, METH_VARARGS, M_Geometry_LineIntersect_doc},
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_O, M_Geometry_PolyFill_doc},
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
{"ClosestPointOnLine", ( PyCFunction ) M_Geometry_ClosestPointOnLine, METH_VARARGS, M_Geometry_ClosestPointOnLine_doc},
{"PointInTriangle2D", ( PyCFunction ) M_Geometry_PointInTriangle2D, METH_VARARGS, M_Geometry_PointInTriangle2D_doc},
{"PointInQuad2D", ( PyCFunction ) M_Geometry_PointInQuad2D, METH_VARARGS, M_Geometry_PointInQuad2D_doc},
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_O, M_Geometry_BoxPack2D_doc},
{"BezierInterp", ( PyCFunction ) M_Geometry_BezierInterp, METH_VARARGS, M_Geometry_BezierInterp_doc},
{"BarycentricTransform", ( PyCFunction ) M_Geometry_BarycentricTransform, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
"Geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
/*----------------------------MODULE INIT-------------------------*/
PyObject *Geometry_Init(void)
{
PyObject *submodule;
submodule = PyModule_Create(&M_Geometry_module_def);
PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
return (submodule);
}