Mathutils refactor & include in sphinx generated docs, (TODO, include getset'ers in docs)
- Mathutils.MidpointVecs --> vector.lerp(other, fac) - Mathutils.AngleBetweenVecs --> vector.angle(other) - Mathutils.ProjectVecs --> vector.project(other) - Mathutils.DifferenceQuats --> quat.difference(other) - Mathutils.Slerp --> quat.slerp(other, fac) - Mathutils.Rand: removed, use pythons random module - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args - Matrix.scalePart --> Matrix.scale_part - Matrix.translationPart --> Matrix.translation_part - Matrix.rotationPart --> Matrix.rotation_part - toMatrix --> to_matrix - toEuler --> to_euler - toQuat --> to_quat - Vector.toTrackQuat --> Vector.to_track_quat
This commit is contained in:
@@ -32,137 +32,17 @@
|
||||
#include "BKE_utildefines.h"
|
||||
#include "BLI_blenlib.h"
|
||||
|
||||
|
||||
//-------------------------DOC STRINGS ---------------------------
|
||||
|
||||
static PyObject *Quaternion_Identity( QuaternionObject * self );
|
||||
static PyObject *Quaternion_Negate( QuaternionObject * self );
|
||||
static PyObject *Quaternion_Conjugate( QuaternionObject * self );
|
||||
static PyObject *Quaternion_Inverse( QuaternionObject * self );
|
||||
static PyObject *Quaternion_Normalize( QuaternionObject * self );
|
||||
static PyObject *Quaternion_ToEuler( QuaternionObject * self, PyObject *args );
|
||||
static PyObject *Quaternion_ToMatrix( QuaternionObject * self );
|
||||
static PyObject *Quaternion_Cross( QuaternionObject * self, QuaternionObject * value );
|
||||
static PyObject *Quaternion_Dot( QuaternionObject * self, QuaternionObject * value );
|
||||
static PyObject *Quaternion_copy( QuaternionObject * self );
|
||||
|
||||
//-----------------------METHOD DEFINITIONS ----------------------
|
||||
static struct PyMethodDef Quaternion_methods[] = {
|
||||
{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, NULL},
|
||||
{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, NULL},
|
||||
{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, NULL},
|
||||
{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, NULL},
|
||||
{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, NULL},
|
||||
{"toEuler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, NULL},
|
||||
{"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, NULL},
|
||||
{"cross", (PyCFunction) Quaternion_Cross, METH_O, NULL},
|
||||
{"dot", (PyCFunction) Quaternion_Dot, METH_O, NULL},
|
||||
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL},
|
||||
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
//----------------------------------Mathutils.Quaternion() --------------
|
||||
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
||||
{
|
||||
PyObject *listObject = NULL, *n, *q;
|
||||
int size, i;
|
||||
float quat[4];
|
||||
double angle = 0.0f;
|
||||
|
||||
size = PyTuple_GET_SIZE(args);
|
||||
if (size == 1 || size == 2) { //seq?
|
||||
listObject = PyTuple_GET_ITEM(args, 0);
|
||||
if (PySequence_Check(listObject)) {
|
||||
size = PySequence_Length(listObject);
|
||||
if ((size == 4 && PySequence_Length(args) !=1) ||
|
||||
(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
|
||||
// invalid args/size
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
if(size == 3){ //get angle in axis/angle
|
||||
n = PySequence_GetItem(args, 1);
|
||||
if(n == NULL) { // parsed item not a number or getItem fail
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
angle = PyFloat_AsDouble(n);
|
||||
Py_DECREF(n);
|
||||
|
||||
if (angle==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
listObject = PyTuple_GET_ITEM(args, 1);
|
||||
if (size>1 && PySequence_Check(listObject)) {
|
||||
size = PySequence_Length(listObject);
|
||||
if (size != 3) {
|
||||
// invalid args/size
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0));
|
||||
|
||||
if (angle==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
} else { // argument was not a sequence
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
} else if (size == 0) { //returns a new empty quat
|
||||
return newQuaternionObject(NULL, Py_NEW, NULL);
|
||||
} else {
|
||||
listObject = args;
|
||||
}
|
||||
|
||||
if (size == 3) { // invalid quat size
|
||||
if(PySequence_Length(args) != 2){
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}else{
|
||||
if(size != 4){
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
for (i=0; i<size; i++) { //parse
|
||||
q = PySequence_GetItem(listObject, i);
|
||||
if (q == NULL) { // Failed to read sequence
|
||||
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
quat[i] = PyFloat_AsDouble(q);
|
||||
Py_DECREF(q);
|
||||
|
||||
if (quat[i]==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if(size == 3) //calculate the quat based on axis/angle
|
||||
#ifdef USE_MATHUTILS_DEG
|
||||
axis_angle_to_quat(quat, quat, angle * (Py_PI / 180));
|
||||
#else
|
||||
axis_angle_to_quat(quat, quat, angle);
|
||||
#endif
|
||||
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
//-----------------------------METHODS------------------------------
|
||||
//----------------------------Quaternion.toEuler()------------------
|
||||
//return the quat as a euler
|
||||
static char Quaternion_ToEuler_doc[] =
|
||||
".. method:: to_euler(euler_compat)\n"
|
||||
"\n"
|
||||
" Return Euler representation of the quaternion.\n"
|
||||
"\n"
|
||||
" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
|
||||
" :type euler_compat: Euler\n"
|
||||
" :return: Euler representation of the quaternion.\n"
|
||||
" :rtype: Euler\n";
|
||||
|
||||
static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
|
||||
{
|
||||
float eul[3];
|
||||
@@ -212,7 +92,14 @@ static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
|
||||
return newEulerObject(eul, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------Quaternion.toMatrix()------------------
|
||||
//return the quat as a matrix
|
||||
static char Quaternion_ToMatrix_doc[] =
|
||||
".. method:: to_matrix(other)\n"
|
||||
"\n"
|
||||
" Return a matrix representation of the quaternion.\n"
|
||||
"\n"
|
||||
" :return: A 3x3 rotation matrix representation of the quaternion.\n"
|
||||
" :rtype: Matrix\n";
|
||||
|
||||
static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
|
||||
{
|
||||
float mat[9]; /* all values are set */
|
||||
@@ -225,7 +112,16 @@ static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
|
||||
}
|
||||
|
||||
//----------------------------Quaternion.cross(other)------------------
|
||||
//return the cross quat
|
||||
static char Quaternion_Cross_doc[] =
|
||||
".. method:: cross(other)\n"
|
||||
"\n"
|
||||
" Return the cross product of this quaternion and another.\n"
|
||||
"\n"
|
||||
" :arg other: The other quaternion to perform the cross product with.\n"
|
||||
" :type other: Quaternion\n"
|
||||
" :return: The cross product.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
|
||||
{
|
||||
float quat[4];
|
||||
@@ -243,7 +139,16 @@ static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * va
|
||||
}
|
||||
|
||||
//----------------------------Quaternion.dot(other)------------------
|
||||
//return the dot quat
|
||||
static char Quaternion_Dot_doc[] =
|
||||
".. method:: dot(other)\n"
|
||||
"\n"
|
||||
" Return the dot product of this quaternion and another.\n"
|
||||
"\n"
|
||||
" :arg other: The other quaternion to perform the dot product with.\n"
|
||||
" :type other: Quaternion\n"
|
||||
" :return: The dot product.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
|
||||
{
|
||||
if (!QuaternionObject_Check(value)) {
|
||||
@@ -257,8 +162,90 @@ static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * valu
|
||||
return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
|
||||
}
|
||||
|
||||
static char Quaternion_Difference_doc[] =
|
||||
".. function:: difference(other)\n"
|
||||
"\n"
|
||||
" Returns a quaternion representing the rotational difference.\n"
|
||||
"\n"
|
||||
" :arg other: second quaternion.\n"
|
||||
" :type other: Quaternion\n"
|
||||
" :return: the rotational difference between the two quat rotations.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
|
||||
{
|
||||
float quat[4], tempQuat[4];
|
||||
double dot = 0.0f;
|
||||
int x;
|
||||
|
||||
if (!QuaternionObject_Check(value)) {
|
||||
PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
||||
return NULL;
|
||||
|
||||
tempQuat[0] = self->quat[0];
|
||||
tempQuat[1] = - self->quat[1];
|
||||
tempQuat[2] = - self->quat[2];
|
||||
tempQuat[3] = - self->quat[3];
|
||||
|
||||
dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
|
||||
tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
|
||||
|
||||
for(x = 0; x < 4; x++) {
|
||||
tempQuat[x] /= (float)(dot * dot);
|
||||
}
|
||||
mul_qt_qtqt(quat, tempQuat, value->quat);
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
static char Quaternion_Slerp_doc[] =
|
||||
".. function:: slerp(other, factor)\n"
|
||||
"\n"
|
||||
" Returns the interpolation of two quaternions.\n"
|
||||
"\n"
|
||||
" :arg other: value to interpolate with.\n"
|
||||
" :type other: Quaternion\n"
|
||||
" :arg factor: The interpolation value in [0.0, 1.0].\n"
|
||||
" :type factor: float\n"
|
||||
" :return: The interpolated rotation.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
|
||||
{
|
||||
QuaternionObject *value;
|
||||
float quat[4], fac;
|
||||
|
||||
if(!PyArg_ParseTuple(args, "O!f", &quaternion_Type, &value, &fac)) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Slerp(): expected Quaternion types and float");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
||||
return NULL;
|
||||
|
||||
if(fac > 1.0f || fac < 0.0f) {
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
interp_qt_qtqt(quat, self->quat, value->quat, fac);
|
||||
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
//----------------------------Quaternion.normalize()----------------
|
||||
//normalize the axis of rotation of [theta,vector]
|
||||
static char Quaternion_Normalize_doc[] =
|
||||
".. function:: normalize()\n"
|
||||
"\n"
|
||||
" Normalize the quaternion.\n"
|
||||
"\n"
|
||||
" :return: an instance of itself.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Normalize(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -271,7 +258,14 @@ static PyObject *Quaternion_Normalize(QuaternionObject * self)
|
||||
return (PyObject*)self;
|
||||
}
|
||||
//----------------------------Quaternion.inverse()------------------
|
||||
//invert the quat
|
||||
static char Quaternion_Inverse_doc[] =
|
||||
".. function:: inverse()\n"
|
||||
"\n"
|
||||
" Set the quaternion to its inverse.\n"
|
||||
"\n"
|
||||
" :return: an instance of itself.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Inverse(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -284,7 +278,14 @@ static PyObject *Quaternion_Inverse(QuaternionObject * self)
|
||||
return (PyObject*)self;
|
||||
}
|
||||
//----------------------------Quaternion.identity()-----------------
|
||||
//generate the identity quaternion
|
||||
static char Quaternion_Identity_doc[] =
|
||||
".. function:: identity()\n"
|
||||
"\n"
|
||||
" Set the quaternion to an identity quaternion.\n"
|
||||
"\n"
|
||||
" :return: an instance of itself.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Identity(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -297,7 +298,14 @@ static PyObject *Quaternion_Identity(QuaternionObject * self)
|
||||
return (PyObject*)self;
|
||||
}
|
||||
//----------------------------Quaternion.negate()-------------------
|
||||
//negate the quat
|
||||
static char Quaternion_Negate_doc[] =
|
||||
".. function:: negate()\n"
|
||||
"\n"
|
||||
" Set the quaternion to its negative.\n"
|
||||
"\n"
|
||||
" :return: an instance of itself.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Negate(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -310,7 +318,14 @@ static PyObject *Quaternion_Negate(QuaternionObject * self)
|
||||
return (PyObject*)self;
|
||||
}
|
||||
//----------------------------Quaternion.conjugate()----------------
|
||||
//negate the vector part
|
||||
static char Quaternion_Conjugate_doc[] =
|
||||
".. function:: conjugate()\n"
|
||||
"\n"
|
||||
" Set the quaternion to its conjugate (negate x, y, z).\n"
|
||||
"\n"
|
||||
" :return: an instance of itself.\n"
|
||||
" :rtype: Quaternion\n";
|
||||
|
||||
static PyObject *Quaternion_Conjugate(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -323,7 +338,16 @@ static PyObject *Quaternion_Conjugate(QuaternionObject * self)
|
||||
return (PyObject*)self;
|
||||
}
|
||||
//----------------------------Quaternion.copy()----------------
|
||||
//return a copy of the quat
|
||||
static char Quaternion_copy_doc[] =
|
||||
".. function:: copy()\n"
|
||||
"\n"
|
||||
" Returns a copy of this quaternion.\n"
|
||||
"\n"
|
||||
" :return: A copy of the quaternion.\n"
|
||||
" :rtype: Quaternion\n"
|
||||
"\n"
|
||||
" .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n";
|
||||
|
||||
static PyObject *Quaternion_copy(QuaternionObject * self)
|
||||
{
|
||||
if(!BaseMath_ReadCallback(self))
|
||||
@@ -702,52 +726,139 @@ static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type )
|
||||
return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
//----------------------------------Mathutils.Quaternion() --------------
|
||||
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
||||
{
|
||||
PyObject *listObject = NULL, *n, *q;
|
||||
int size, i;
|
||||
float quat[4];
|
||||
double angle = 0.0f;
|
||||
|
||||
size = PyTuple_GET_SIZE(args);
|
||||
if (size == 1 || size == 2) { //seq?
|
||||
listObject = PyTuple_GET_ITEM(args, 0);
|
||||
if (PySequence_Check(listObject)) {
|
||||
size = PySequence_Length(listObject);
|
||||
if ((size == 4 && PySequence_Length(args) !=1) ||
|
||||
(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
|
||||
// invalid args/size
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
if(size == 3){ //get angle in axis/angle
|
||||
n = PySequence_GetItem(args, 1);
|
||||
if(n == NULL) { // parsed item not a number or getItem fail
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
angle = PyFloat_AsDouble(n);
|
||||
Py_DECREF(n);
|
||||
|
||||
if (angle==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
listObject = PyTuple_GET_ITEM(args, 1);
|
||||
if (size>1 && PySequence_Check(listObject)) {
|
||||
size = PySequence_Length(listObject);
|
||||
if (size != 3) {
|
||||
// invalid args/size
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0));
|
||||
|
||||
if (angle==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
} else { // argument was not a sequence
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
} else if (size == 0) { //returns a new empty quat
|
||||
return newQuaternionObject(NULL, Py_NEW, NULL);
|
||||
} else {
|
||||
listObject = args;
|
||||
}
|
||||
|
||||
if (size == 3) { // invalid quat size
|
||||
if(PySequence_Length(args) != 2){
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}else{
|
||||
if(size != 4){
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
for (i=0; i<size; i++) { //parse
|
||||
q = PySequence_GetItem(listObject, i);
|
||||
if (q == NULL) { // Failed to read sequence
|
||||
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
quat[i] = PyFloat_AsDouble(q);
|
||||
Py_DECREF(q);
|
||||
|
||||
if (quat[i]==-1 && PyErr_Occurred()) {
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if(size == 3) //calculate the quat based on axis/angle
|
||||
#ifdef USE_MATHUTILS_DEG
|
||||
axis_angle_to_quat(quat, quat, angle * (Py_PI / 180));
|
||||
#else
|
||||
axis_angle_to_quat(quat, quat, angle);
|
||||
#endif
|
||||
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
|
||||
//-----------------------METHOD DEFINITIONS ----------------------
|
||||
static struct PyMethodDef Quaternion_methods[] = {
|
||||
{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
|
||||
{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
|
||||
{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
|
||||
{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
|
||||
{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
|
||||
{"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc},
|
||||
{"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
|
||||
{"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc},
|
||||
{"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc},
|
||||
{"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc},
|
||||
{"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc},
|
||||
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
||||
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
|
||||
{NULL, NULL, 0, NULL}
|
||||
};
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Python attributes get/set structure: */
|
||||
/*****************************************************************************/
|
||||
static PyGetSetDef Quaternion_getseters[] = {
|
||||
{"w",
|
||||
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
||||
"Quaternion W value",
|
||||
(void *)0},
|
||||
{"x",
|
||||
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
||||
"Quaternion X axis",
|
||||
(void *)1},
|
||||
{"y",
|
||||
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
||||
"Quaternion Y axis",
|
||||
(void *)2},
|
||||
{"z",
|
||||
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
||||
"Quaternion Z axis",
|
||||
(void *)3},
|
||||
{"magnitude",
|
||||
(getter)Quaternion_getMagnitude, (setter)NULL,
|
||||
"Size of the quaternion",
|
||||
NULL},
|
||||
{"angle",
|
||||
(getter)Quaternion_getAngle, (setter)NULL,
|
||||
"angle of the quaternion",
|
||||
NULL},
|
||||
{"axis",
|
||||
(getter)Quaternion_getAxisVec, (setter)NULL,
|
||||
"quaternion axis as a vector",
|
||||
NULL},
|
||||
{"wrapped",
|
||||
(getter)BaseMathObject_getWrapped, (setter)NULL,
|
||||
"True when this wraps blenders internal data",
|
||||
NULL},
|
||||
{"_owner",
|
||||
(getter)BaseMathObject_getOwner, (setter)NULL,
|
||||
"Read only owner for vectors that depend on another object",
|
||||
NULL},
|
||||
|
||||
{"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value", (void *)0},
|
||||
{"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis", (void *)1},
|
||||
{"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis", (void *)2},
|
||||
{"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis", (void *)3},
|
||||
{"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion", NULL},
|
||||
{"angle", (getter)Quaternion_getAngle, (setter)NULL, "angle of the quaternion", NULL},
|
||||
{"axis",(getter)Quaternion_getAxisVec, (setter)NULL, "quaternion axis as a vector", NULL},
|
||||
{"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "True when this wraps blenders internal data", NULL},
|
||||
{"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, "Read only owner for vectors that depend on another object", NULL},
|
||||
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
|
||||
};
|
||||
|
||||
|
||||
//------------------PY_OBECT DEFINITION--------------------------
|
||||
PyTypeObject quaternion_Type = {
|
||||
PyVarObject_HEAD_INIT(NULL, 0)
|
||||
@@ -843,3 +954,4 @@ PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
|
||||
|
||||
return (PyObject *)self;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user