Cleanup: use BLI_kdtree_3d prefix
Use prefix now there isn't only the 3d version.
This commit is contained in:
@@ -655,7 +655,7 @@ PyMODINIT_FUNC PyInit_mathutils(void)
|
||||
PyModule_AddObject(mod, "bvhtree", (submodule = PyInit_mathutils_bvhtree()));
|
||||
PyDict_SetItem(sys_modules, PyModule_GetNameObject(submodule), submodule);
|
||||
|
||||
/* KDTree submodule */
|
||||
/* KDTree_3d submodule */
|
||||
PyModule_AddObject(mod, "kdtree", (submodule = PyInit_mathutils_kdtree()));
|
||||
PyDict_SetItem(sys_modules, PyModule_GetNameObject(submodule), submodule);
|
||||
#endif
|
||||
|
@@ -38,7 +38,7 @@
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
KDTree *obj;
|
||||
KDTree_3d *obj;
|
||||
unsigned int maxsize;
|
||||
unsigned int count;
|
||||
unsigned int count_balance; /* size when we last balanced */
|
||||
@@ -48,7 +48,7 @@ typedef struct {
|
||||
/* -------------------------------------------------------------------- */
|
||||
/* Utility helper functions */
|
||||
|
||||
static void kdtree_nearest_to_py_tuple(const KDTreeNearest *nearest, PyObject *py_retval)
|
||||
static void kdtree_nearest_to_py_tuple(const KDTreeNearest_3d *nearest, PyObject *py_retval)
|
||||
{
|
||||
BLI_assert(nearest->index >= 0);
|
||||
BLI_assert(PyTuple_GET_SIZE(py_retval) == 3);
|
||||
@@ -59,7 +59,7 @@ static void kdtree_nearest_to_py_tuple(const KDTreeNearest *nearest, PyObject *p
|
||||
PyFloat_FromDouble(nearest->dist));
|
||||
}
|
||||
|
||||
static PyObject *kdtree_nearest_to_py(const KDTreeNearest *nearest)
|
||||
static PyObject *kdtree_nearest_to_py(const KDTreeNearest_3d *nearest)
|
||||
{
|
||||
PyObject *py_retval;
|
||||
|
||||
@@ -70,7 +70,7 @@ static PyObject *kdtree_nearest_to_py(const KDTreeNearest *nearest)
|
||||
return py_retval;
|
||||
}
|
||||
|
||||
static PyObject *kdtree_nearest_to_py_and_check(const KDTreeNearest *nearest)
|
||||
static PyObject *kdtree_nearest_to_py_and_check(const KDTreeNearest_3d *nearest)
|
||||
{
|
||||
PyObject *py_retval;
|
||||
|
||||
@@ -110,7 +110,7 @@ static int PyKDTree__tp_init(PyKDTree *self, PyObject *args, PyObject *kwargs)
|
||||
return -1;
|
||||
}
|
||||
|
||||
self->obj = BLI_kdtree_new(maxsize);
|
||||
self->obj = BLI_kdtree_3d_new(maxsize);
|
||||
self->maxsize = maxsize;
|
||||
self->count = 0;
|
||||
self->count_balance = 0;
|
||||
@@ -120,7 +120,7 @@ static int PyKDTree__tp_init(PyKDTree *self, PyObject *args, PyObject *kwargs)
|
||||
|
||||
static void PyKDTree__tp_dealloc(PyKDTree *self)
|
||||
{
|
||||
BLI_kdtree_free(self->obj);
|
||||
BLI_kdtree_3d_free(self->obj);
|
||||
Py_TYPE(self)->tp_free((PyObject *)self);
|
||||
}
|
||||
|
||||
@@ -161,7 +161,7 @@ static PyObject *py_kdtree_insert(PyKDTree *self, PyObject *args, PyObject *kwar
|
||||
return NULL;
|
||||
}
|
||||
|
||||
BLI_kdtree_insert(self->obj, index, co);
|
||||
BLI_kdtree_3d_insert(self->obj, index, co);
|
||||
self->count++;
|
||||
|
||||
Py_RETURN_NONE;
|
||||
@@ -178,7 +178,7 @@ PyDoc_STRVAR(py_kdtree_balance_doc,
|
||||
);
|
||||
static PyObject *py_kdtree_balance(PyKDTree *self)
|
||||
{
|
||||
BLI_kdtree_balance(self->obj);
|
||||
BLI_kdtree_3d_balance(self->obj);
|
||||
self->count_balance = self->count;
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
@@ -228,7 +228,7 @@ static PyObject *py_kdtree_find(PyKDTree *self, PyObject *args, PyObject *kwargs
|
||||
{
|
||||
PyObject *py_co, *py_filter = NULL;
|
||||
float co[3];
|
||||
KDTreeNearest nearest;
|
||||
KDTreeNearest_3d nearest;
|
||||
const char *keywords[] = {"co", "filter", NULL};
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(
|
||||
@@ -249,7 +249,7 @@ static PyObject *py_kdtree_find(PyKDTree *self, PyObject *args, PyObject *kwargs
|
||||
nearest.index = -1;
|
||||
|
||||
if (py_filter == NULL) {
|
||||
BLI_kdtree_find_nearest(self->obj, co, &nearest);
|
||||
BLI_kdtree_3d_find_nearest(self->obj, co, &nearest);
|
||||
}
|
||||
else {
|
||||
struct PyKDTree_NearestData data = {0};
|
||||
@@ -257,7 +257,7 @@ static PyObject *py_kdtree_find(PyKDTree *self, PyObject *args, PyObject *kwargs
|
||||
data.py_filter = py_filter;
|
||||
data.is_error = false;
|
||||
|
||||
BLI_kdtree_find_nearest_cb(
|
||||
BLI_kdtree_3d_find_nearest_cb(
|
||||
self->obj, co,
|
||||
py_find_nearest_cb, &data,
|
||||
&nearest);
|
||||
@@ -287,7 +287,7 @@ static PyObject *py_kdtree_find_n(PyKDTree *self, PyObject *args, PyObject *kwar
|
||||
PyObject *py_list;
|
||||
PyObject *py_co;
|
||||
float co[3];
|
||||
KDTreeNearest *nearest;
|
||||
KDTreeNearest_3d *nearest;
|
||||
unsigned int n;
|
||||
int i, found;
|
||||
const char *keywords[] = {"co", "n", NULL};
|
||||
@@ -312,9 +312,9 @@ static PyObject *py_kdtree_find_n(PyKDTree *self, PyObject *args, PyObject *kwar
|
||||
return NULL;
|
||||
}
|
||||
|
||||
nearest = MEM_mallocN(sizeof(KDTreeNearest) * n, __func__);
|
||||
nearest = MEM_mallocN(sizeof(KDTreeNearest_3d) * n, __func__);
|
||||
|
||||
found = BLI_kdtree_find_nearest_n(self->obj, co, nearest, n);
|
||||
found = BLI_kdtree_3d_find_nearest_n(self->obj, co, nearest, n);
|
||||
|
||||
py_list = PyList_New(found);
|
||||
|
||||
@@ -344,7 +344,7 @@ static PyObject *py_kdtree_find_range(PyKDTree *self, PyObject *args, PyObject *
|
||||
PyObject *py_list;
|
||||
PyObject *py_co;
|
||||
float co[3];
|
||||
KDTreeNearest *nearest = NULL;
|
||||
KDTreeNearest_3d *nearest = NULL;
|
||||
float radius;
|
||||
int i, found;
|
||||
|
||||
@@ -370,7 +370,7 @@ static PyObject *py_kdtree_find_range(PyKDTree *self, PyObject *args, PyObject *
|
||||
return NULL;
|
||||
}
|
||||
|
||||
found = BLI_kdtree_range_search(self->obj, co, &nearest, radius);
|
||||
found = BLI_kdtree_3d_range_search(self->obj, co, &nearest, radius);
|
||||
|
||||
py_list = PyList_New(found);
|
||||
|
||||
|
Reference in New Issue
Block a user