Cleanup: Python, Clang-Tidy else-after-return fixes

This addresses warnings from Clang-Tidy's `readability-else-after-return`
rule in the `source/blender/python` module.

No functional changes.
This commit is contained in:
2020-08-07 12:41:06 +02:00
parent 44b7354742
commit 3d48d99647
29 changed files with 1799 additions and 2051 deletions

View File

@@ -54,9 +54,8 @@ static int matrix_row_vector_check(MatrixObject *mat, VectorObject *vec, int row
"owner matrix has been resized since this row vector was created");
return 0;
}
else {
return 1;
}
return 1;
}
static int matrix_col_vector_check(MatrixObject *mat, VectorObject *vec, int col)
@@ -67,9 +66,8 @@ static int matrix_col_vector_check(MatrixObject *mat, VectorObject *vec, int col
"owner matrix has been resized since this column vector was created");
return 0;
}
else {
return 1;
}
return 1;
}
/* ----------------------------------------------------------------------------
@@ -380,9 +378,8 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
if (Matrix_ass_slice((MatrixObject *)matrix, 0, INT_MAX, arg) == 0) {
return matrix;
}
else { /* matrix ok, slice assignment not */
Py_DECREF(matrix);
}
/* matrix ok, slice assignment not */
Py_DECREF(matrix);
}
}
break;
@@ -406,15 +403,13 @@ static PyObject *matrix__apply_to_copy(PyObject *(*matrix_func)(MatrixObject *),
Py_DECREF(ret_dummy);
return ret;
}
else { /* error */
Py_DECREF(ret);
return NULL;
}
}
else {
/* copy may fail if the read callback errors out */
/* error */
Py_DECREF(ret);
return NULL;
}
/* copy may fail if the read callback errors out */
return NULL;
}
/* when a matrix is 4x4 size but initialized as a 3x3, re-assign values for 4x4 */
@@ -512,10 +507,9 @@ static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
"or a string in 'X', 'Y', 'Z'");
return NULL;
}
else {
/* use the string */
vec = NULL;
}
/* use the string */
vec = NULL;
}
angle = angle_wrap_rad(angle);
@@ -1023,7 +1017,7 @@ static float matrix_determinant_internal(const MatrixObject *self)
MATRIX_ITEM(self, 1, 0),
MATRIX_ITEM(self, 1, 1));
}
else if (self->num_col == 3) {
if (self->num_col == 3) {
return determinant_m3(MATRIX_ITEM(self, 0, 0),
MATRIX_ITEM(self, 0, 1),
MATRIX_ITEM(self, 0, 2),
@@ -1034,9 +1028,8 @@ static float matrix_determinant_internal(const MatrixObject *self)
MATRIX_ITEM(self, 2, 1),
MATRIX_ITEM(self, 2, 2));
}
else {
return determinant_m4((float(*)[4])self->matrix);
}
return determinant_m4((float(*)[4])self->matrix);
}
static void adjoint_matrix_n(float *mat_dst, const float *mat_src, const ushort dim)
@@ -1094,9 +1087,8 @@ static bool matrix_invert_internal(const MatrixObject *self, float *r_mat)
matrix_invert_with_det_n_internal(r_mat, self->matrix, det, self->num_col);
return true;
}
else {
return false;
}
return false;
}
/**
@@ -1475,9 +1467,8 @@ static bool matrix_invert_is_compat(const MatrixObject *self)
"only square matrices are supported");
return false;
}
else {
return true;
}
return true;
}
static bool matrix_invert_args_check(const MatrixObject *self, PyObject *args, bool check_type)
@@ -1605,10 +1596,9 @@ static PyObject *Matrix_inverted(MatrixObject *self, PyObject *args)
Py_INCREF(fallback);
return fallback;
}
else {
matrix_invert_raise_degenerate();
return NULL;
}
matrix_invert_raise_degenerate();
return NULL;
}
return Matrix_copy_notest(self, mat);
@@ -2386,48 +2376,47 @@ static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *va
/* PySequence_Fast sets the error */
return -1;
}
else {
PyObject **value_fast_items = PySequence_Fast_ITEMS(value_fast);
const int size = end - begin;
int row, col;
float mat[MATRIX_MAX_DIM * MATRIX_MAX_DIM];
float vec[4];
if (PySequence_Fast_GET_SIZE(value_fast) != size) {
PyObject **value_fast_items = PySequence_Fast_ITEMS(value_fast);
const int size = end - begin;
int row, col;
float mat[MATRIX_MAX_DIM * MATRIX_MAX_DIM];
float vec[4];
if (PySequence_Fast_GET_SIZE(value_fast) != size) {
Py_DECREF(value_fast);
PyErr_SetString(PyExc_ValueError,
"matrix[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
memcpy(mat, self->matrix, self->num_col * self->num_row * sizeof(float));
/* parse sub items */
for (row = begin; row < end; row++) {
/* parse each sub sequence */
PyObject *item = value_fast_items[row - begin];
if (mathutils_array_parse(
vec, self->num_col, self->num_col, item, "matrix[begin:end] = value assignment") ==
-1) {
Py_DECREF(value_fast);
PyErr_SetString(PyExc_ValueError,
"matrix[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
memcpy(mat, self->matrix, self->num_col * self->num_row * sizeof(float));
/* parse sub items */
for (row = begin; row < end; row++) {
/* parse each sub sequence */
PyObject *item = value_fast_items[row - begin];
if (mathutils_array_parse(
vec, self->num_col, self->num_col, item, "matrix[begin:end] = value assignment") ==
-1) {
Py_DECREF(value_fast);
return -1;
}
for (col = 0; col < self->num_col; col++) {
mat[col * self->num_row + row] = vec[col];
}
for (col = 0; col < self->num_col; col++) {
mat[col * self->num_row + row] = vec[col];
}
Py_DECREF(value_fast);
/*parsed well - now set in matrix*/
memcpy(self->matrix, mat, self->num_col * self->num_row * sizeof(float));
(void)BaseMath_WriteCallback(self);
return 0;
}
Py_DECREF(value_fast);
/*parsed well - now set in matrix*/
memcpy(self->matrix, mat, self->num_col * self->num_row * sizeof(float));
(void)BaseMath_WriteCallback(self);
return 0;
}
/*------------------------NUMERIC PROTOCOLS----------------------
*------------------------obj + obj------------------------------*/
@@ -2540,7 +2529,7 @@ static PyObject *Matrix_mul(PyObject *m1, PyObject *m2)
return Matrix_CreatePyObject(mat, mat2->num_col, mat1->num_row, Py_TYPE(mat1));
}
else if (mat2) {
if (mat2) {
/*FLOAT/INT * MATRIX */
if (((scalar = PyFloat_AsDouble(m1)) == -1.0f && PyErr_Occurred()) == 0) {
return matrix_mul_float(mat2, scalar);
@@ -2655,7 +2644,7 @@ static PyObject *Matrix_matmul(PyObject *m1, PyObject *m2)
return Matrix_CreatePyObject(mat, mat2->num_col, mat1->num_row, Py_TYPE(mat1));
}
else if (mat1) {
if (mat1) {
/* MATRIX @ VECTOR */
if (VectorObject_Check(m2)) {
VectorObject *vec2 = (VectorObject *)m2;
@@ -2772,7 +2761,7 @@ static PyObject *Matrix_subscript(MatrixObject *self, PyObject *item)
}
return Matrix_item_row(self, i);
}
else if (PySlice_Check(item)) {
if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, self->num_row, &start, &stop, &step, &slicelength) < 0) {
@@ -2782,19 +2771,17 @@ static PyObject *Matrix_subscript(MatrixObject *self, PyObject *item)
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
if (step == 1) {
return Matrix_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrices");
return NULL;
}
}
else {
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrices");
return NULL;
}
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return NULL;
}
static int Matrix_ass_subscript(MatrixObject *self, PyObject *item, PyObject *value)
@@ -2809,7 +2796,7 @@ static int Matrix_ass_subscript(MatrixObject *self, PyObject *item, PyObject *va
}
return Matrix_ass_item_row(self, i, value);
}
else if (PySlice_Check(item)) {
if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, self->num_row, &start, &stop, &step, &slicelength) < 0) {
@@ -2819,16 +2806,14 @@ static int Matrix_ass_subscript(MatrixObject *self, PyObject *item, PyObject *va
if (step == 1) {
return Matrix_ass_slice(self, start, stop, value);
}
else {
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrices");
return -1;
}
}
else {
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrices");
return -1;
}
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return -1;
}
static PyMappingMethods Matrix_AsMapping = {
@@ -2977,15 +2962,14 @@ static PyObject *Matrix_is_negative_get(MatrixObject *self, void *UNUSED(closure
if (self->num_row == 4 && self->num_col == 4) {
return PyBool_FromLong(is_negative_m4((float(*)[4])self->matrix));
}
else if (self->num_row == 3 && self->num_col == 3) {
if (self->num_row == 3 && self->num_col == 3) {
return PyBool_FromLong(is_negative_m3((float(*)[3])self->matrix));
}
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_negative: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_negative: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
PyDoc_STRVAR(Matrix_is_orthogonal_doc,
@@ -3000,15 +2984,14 @@ static PyObject *Matrix_is_orthogonal_get(MatrixObject *self, void *UNUSED(closu
if (self->num_row == 4 && self->num_col == 4) {
return PyBool_FromLong(is_orthonormal_m4((float(*)[4])self->matrix));
}
else if (self->num_row == 3 && self->num_col == 3) {
if (self->num_row == 3 && self->num_col == 3) {
return PyBool_FromLong(is_orthonormal_m3((float(*)[3])self->matrix));
}
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
PyDoc_STRVAR(Matrix_is_orthogonal_axis_vectors_doc,
@@ -3024,15 +3007,14 @@ static PyObject *Matrix_is_orthogonal_axis_vectors_get(MatrixObject *self, void
if (self->num_row == 4 && self->num_col == 4) {
return PyBool_FromLong(is_orthogonal_m4((float(*)[4])self->matrix));
}
else if (self->num_row == 3 && self->num_col == 3) {
if (self->num_row == 3 && self->num_col == 3) {
return PyBool_FromLong(is_orthogonal_m3((float(*)[3])self->matrix));
}
else {
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal_axis_vectors: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
PyErr_SetString(PyExc_AttributeError,
"Matrix.is_orthogonal_axis_vectors: "
"inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
/*****************************************************************************/
@@ -3478,14 +3460,13 @@ static PyObject *MatrixAccess_subscript(MatrixAccessObject *self, PyObject *item
}
return Matrix_item_row(matrix_user, i);
}
else { /* MAT_ACCESS_ROW */
if (i < 0) {
i += matrix_user->num_col;
}
return Matrix_item_col(matrix_user, i);
/* MAT_ACCESS_ROW */
if (i < 0) {
i += matrix_user->num_col;
}
return Matrix_item_col(matrix_user, i);
}
else if (PySlice_Check(item)) {
if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, MatrixAccess_len(self), &start, &stop, &step, &slicelength) <
@@ -3496,19 +3477,17 @@ static PyObject *MatrixAccess_subscript(MatrixAccessObject *self, PyObject *item
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
if (step == 1) {
return MatrixAccess_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrix accessors");
return NULL;
}
}
else {
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
PyErr_SetString(PyExc_IndexError, "slice steps not supported with matrix accessors");
return NULL;
}
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return NULL;
}
static int MatrixAccess_ass_subscript(MatrixAccessObject *self, PyObject *item, PyObject *value)
@@ -3527,19 +3506,17 @@ static int MatrixAccess_ass_subscript(MatrixAccessObject *self, PyObject *item,
}
return Matrix_ass_item_row(matrix_user, i, value);
}
else { /* MAT_ACCESS_ROW */
if (i < 0) {
i += matrix_user->num_col;
}
return Matrix_ass_item_col(matrix_user, i, value);
/* MAT_ACCESS_ROW */
if (i < 0) {
i += matrix_user->num_col;
}
return Matrix_ass_item_col(matrix_user, i, value);
}
/* TODO, slice */
else {
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return -1;
}
PyErr_Format(
PyExc_TypeError, "matrix indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return -1;
}
static PyObject *MatrixAccess_iter(MatrixAccessObject *self)