New math util funcitons:

- equals_v2v2
- project_v2_v2v2
- isect_seg_seg_v2_point
which would be necessery for my further multires interpolation commit

M_Geometry_LineIntersect2D now uses isect_seg_seg_v2_point(). Behaviour of this
function was changed a bit -- it haven't returned intersection point in several
cases when two segments are making angle.
This commit is contained in:
2010-12-11 21:27:39 +00:00
parent 194449d038
commit 448d24e7a0
6 changed files with 97 additions and 78 deletions

View File

@@ -73,6 +73,7 @@ void closest_to_line_segment_v3(float r[3], float p[3], float l1[3], float l2[3]
int isect_line_line_v2(float a1[2], float a2[2], float b1[2], float b2[2]); int isect_line_line_v2(float a1[2], float a2[2], float b1[2], float b2[2]);
int isect_line_line_v2_short(short a1[2], short a2[2], short b1[2], short b2[2]); int isect_line_line_v2_short(short a1[2], short a2[2], short b1[2], short b2[2]);
int isect_seg_seg_v2_point(float v1[2], float v2[2], float v3[2], float v4[2], float vi[2]);
/* Returns the number of point of interests /* Returns the number of point of interests
* 0 - lines are colinear * 0 - lines are colinear

View File

@@ -124,6 +124,7 @@ void mid_v3_v3v3(float r[3], const float a[3], const float b[3]);
MINLINE int is_zero_v3(const float a[3]); MINLINE int is_zero_v3(const float a[3]);
MINLINE int is_one_v3(const float a[3]); MINLINE int is_one_v3(const float a[3]);
MINLINE int equals_v2v2(const float *v1, const float *v2);
MINLINE int equals_v3v3(const float a[3], const float b[3]); MINLINE int equals_v3v3(const float a[3], const float b[3]);
MINLINE int compare_v3v3(const float a[3], const float b[3], const float limit); MINLINE int compare_v3v3(const float a[3], const float b[3], const float limit);
MINLINE int compare_len_v3v3(const float a[3], const float b[3], const float limit); MINLINE int compare_len_v3v3(const float a[3], const float b[3], const float limit);
@@ -149,6 +150,7 @@ void angle_quad_v3(float angles[4], const float v1[3], const float v2[3], const
/********************************* Geometry **********************************/ /********************************* Geometry **********************************/
void project_v2_v2v2(float c[2], const float v1[2], const float v2[2]);
void project_v3_v3v3(float r[3], const float p[3], const float n[3]); void project_v3_v3v3(float r[3], const float p[3], const float n[3]);
void reflect_v3_v3v3(float r[3], const float v[3], const float n[3]); void reflect_v3_v3v3(float r[3], const float v[3], const float n[3]);
void ortho_basis_v3v3_v3(float r1[3], float r2[3], const float a[3]); void ortho_basis_v3v3_v3(float r1[3], float r2[3], const float a[3]);

View File

@@ -282,6 +282,81 @@ int isect_line_line_v2(float *v1, float *v2, float *v3, float *v4)
return 0; return 0;
} }
/* get intersection point of two 2D segments and return intersection type:
-1: colliniar
1: intersection */
int isect_seg_seg_v2_point(float v1[2], float v2[2], float v3[2], float v4[2], float vi[2])
{
float a1, a2, b1, b2, c1, c2, d;
float u, v;
const float eps= 0.000001f;
a1= v2[0]-v1[0];
b1= v4[0]-v3[0];
c1= v1[0]-v4[0];
a2= v2[1]-v1[1];
b2= v4[1]-v3[1];
c2= v1[1]-v4[1];
d= a1*b2-a2*b1;
if(d==0) {
if(a1*c2-a2*c1==0.0f && b1*c2-b2*c1==0.0f) { /* equal lines */
float a[2], b[2], c[2];
float u2;
if(len_v2v2(v1, v2)==0.0f) {
if(len_v2v2(v3, v4)>eps) {
/* use non-point segment as basis */
SWAP(float, v1[0], v3[0]);
SWAP(float, v1[1], v3[1]);
SWAP(float, v2[0], v4[0]);
SWAP(float, v2[1], v4[1]);
} else { /* both of segments are points */
if(equals_v2v2(v1, v3)) { /* points are equal */
copy_v2_v2(vi, v1);
return 1;
}
/* two different points */
return -1;
}
}
sub_v2_v2v2(a, v3, v1);
sub_v2_v2v2(b, v2, v1);
sub_v2_v2v2(c, v2, v1);
u= dot_v2v2(a, b) / dot_v2v2(c, c);
sub_v2_v2v2(a, v4, v1);
u2= dot_v2v2(a, b) / dot_v2v2(c, c);
if(u>u2) SWAP(float, u, u2);
if(u>1.0f+eps || u2<-eps) return -1; /* non-ovlerlapping segments */
else if(maxf(0.0f, u) == minf(1.0f, u2)){ /* one common point: can return result */
interp_v2_v2v2(vi, v1, v2, maxf(0, u));
return 1;
}
}
/* lines are colliniar */
return -1;
}
u= (c2*b1-b2*c1)/d;
v= (c1*a2-a1*c2)/d;
if(u>=-eps && u<=1.0f+eps && v>=-eps && v<=1.0f+eps) { /* intersection */
interp_v2_v2v2(vi, v1, v2, u);
return 1;
}
/* out of segment intersection */
return -1;
}
/* /*
-1: colliniar -1: colliniar
1: intersection 1: intersection

View File

@@ -230,6 +230,16 @@ void angle_quad_v3(float angles[4], const float v1[3], const float v2[3], const
/********************************* Geometry **********************************/ /********************************* Geometry **********************************/
/* Project v1 on v2 */
void project_v2_v2v2(float c[2], const float v1[2], const float v2[2])
{
float mul;
mul = dot_v2v2(v1, v2) / dot_v2v2(v2, v2);
c[0] = mul * v2[0];
c[1] = mul * v2[1];
}
/* Project v1 on v2 */ /* Project v1 on v2 */
void project_v3_v3v3(float c[3], const float v1[3], const float v2[3]) void project_v3_v3v3(float c[3], const float v1[3], const float v2[3])
{ {

View File

@@ -429,6 +429,11 @@ MINLINE int is_one_v3(const float *v)
return (v[0] == 1 && v[1] == 1 && v[2] == 1); return (v[0] == 1 && v[1] == 1 && v[2] == 1);
} }
MINLINE int equals_v2v2(const float *v1, const float *v2)
{
return ((v1[0]==v2[0]) && (v1[1]==v2[1]));
}
MINLINE int equals_v3v3(const float *v1, const float *v2) MINLINE int equals_v3v3(const float *v1, const float *v2)
{ {
return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2])); return ((v1[0]==v2[0]) && (v1[1]==v2[1]) && (v1[2]==v2[2]));

View File

@@ -587,7 +587,7 @@ static PyObject *M_Geometry_PolyFill(PyObject *UNUSED(self), PyObject * polyLine
static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* args) static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* args)
{ {
VectorObject *line_a1, *line_a2, *line_b1, *line_b2; VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
float a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2]; float vi[2];
if( !PyArg_ParseTuple ( args, "O!O!O!O!", if( !PyArg_ParseTuple ( args, "O!O!O!O!",
&vector_Type, &line_a1, &vector_Type, &line_a1,
&vector_Type, &line_a2, &vector_Type, &line_a2,
@@ -600,86 +600,12 @@ static PyObject *M_Geometry_LineIntersect2D(PyObject *UNUSED(self), PyObject* ar
if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2)) if(!BaseMath_ReadCallback(line_a1) || !BaseMath_ReadCallback(line_a2) || !BaseMath_ReadCallback(line_b1) || !BaseMath_ReadCallback(line_b2))
return NULL; return NULL;
a1x= line_a1->vec[0];
a1y= line_a1->vec[1];
a2x= line_a2->vec[0];
a2y= line_a2->vec[1];
b1x= line_b1->vec[0]; if(isect_seg_seg_v2_point(line_a1->vec, line_a2->vec, line_b1->vec, line_b2->vec, vi) == 1) {
b1y= line_b1->vec[1]; return newVectorObject(vi, 2, Py_NEW, NULL);
b2x= line_b2->vec[0]; } else {
b2y= line_b2->vec[1];
if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
(MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
(MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
(MAX2(a1y, a2y) < MIN2(b1y, b2y)) ) {
Py_RETURN_NONE; Py_RETURN_NONE;
} }
/* Make sure the hoz/vert line comes first. */
if (fabs(b1x - b2x) < eps || fabs(b1y - b2y) < eps) {
SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
SWAP_FLOAT(a1y, b1y, xi);
SWAP_FLOAT(a2x, b2x, xi);
SWAP_FLOAT(a2y, b2y, xi);
}
if (fabs(a1x-a2x) < eps) { /* verticle line */
if (fabs(b1x-b2x) < eps){ /*verticle second line */
Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
}
else if (fabs(b1y-b2y) < eps) {
/*X of vert, Y of hoz. no calculation needed */
newvec[0]= a1x;
newvec[1]= b1y;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
Py_RETURN_NONE;
} else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
Py_RETURN_NONE;
}
newvec[0]= a1x;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW, NULL);
} else if (fabs(a2y-a1y) < eps) { /* hoz line1 */
if (fabs(b2y-b1y) < eps) { /*hoz line2*/
Py_RETURN_NONE; /*2 hoz lines dont intersect*/
}
/* Can skip vert line check for seg 2 since its covered above. */
xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
Py_RETURN_NONE;
} else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
Py_RETURN_NONE;
}
newvec[0]= xi;
newvec[1]= a1y;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
b1 = (a2y-a1y)/(a2x-a1x);
b2 = (b2y-b1y)/(b2x-b1x);
a1 = a1y-b1*a1x;
a2 = b1y-b2*b1x;
if (b1 - b2 == 0.0) {
Py_RETURN_NONE;
}
xi = - (a1-a2)/(b1-b2);
yi = a1+b1*xi;
if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
newvec[0]= xi;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW, NULL);
}
Py_RETURN_NONE;
} }
static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject* args) static PyObject *M_Geometry_ClosestPointOnLine(PyObject *UNUSED(self), PyObject* args)