Cycles: Move mesh attribute creation into separate functions

This makes overall code of create_mesh() much cleaner and easier to follow.
This commit is contained in:
2015-02-10 23:40:26 +05:00
parent bc218cf4d2
commit 4e37b29631

View File

@@ -137,7 +137,7 @@ static void mikk_set_tangent_space(const SMikkTSpaceContext *context, const floa
userdata->tangent[face*4 + vert] = make_float4(T[0], T[1], T[2], sign);
}
static void mikk_compute_tangents(BL::Mesh b_mesh, BL::MeshTextureFaceLayer *b_layer, Mesh *mesh, vector<int>& nverts, bool need_sign, bool active_render)
static void mikk_compute_tangents(BL::Mesh b_mesh, BL::MeshTextureFaceLayer *b_layer, Mesh *mesh, const vector<int>& nverts, bool need_sign, bool active_render)
{
/* setup userdata */
MikkUserData userdata(b_mesh, b_layer, nverts.size());
@@ -258,6 +258,167 @@ static void create_mesh_volume_attributes(Scene *scene, BL::Object b_ob, Mesh *m
create_mesh_volume_attribute(b_ob, mesh, scene->image_manager, ATTR_STD_VOLUME_VELOCITY, frame);
}
/* Create vertex color attributes. */
static void attr_create_vertex_color(Scene *scene,
Mesh *mesh,
BL::Mesh b_mesh,
const vector<int>& nverts)
{
BL::Mesh::tessface_vertex_colors_iterator l;
for(b_mesh.tessface_vertex_colors.begin(l); l != b_mesh.tessface_vertex_colors.end(); ++l) {
if(!mesh->need_attribute(scene, ustring(l->name().c_str())))
continue;
Attribute *attr = mesh->attributes.add(
ustring(l->name().c_str()), TypeDesc::TypeColor, ATTR_ELEMENT_CORNER_BYTE);
BL::MeshColorLayer::data_iterator c;
uchar4 *cdata = attr->data_uchar4();
size_t i = 0;
for(l->data.begin(c); c != l->data.end(); ++c, ++i) {
cdata[0] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color1())));
cdata[1] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color2())));
cdata[2] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color3())));
if(nverts[i] == 4) {
cdata[3] = cdata[0];
cdata[4] = cdata[2];
cdata[5] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color4())));
cdata += 6;
}
else
cdata += 3;
}
}
}
/* Create uv map attributes. */
static void attr_create_uv_map(Scene *scene,
Mesh *mesh,
BL::Mesh b_mesh,
const vector<int>& nverts)
{
if (b_mesh.tessface_uv_textures.length() != 0) {
BL::Mesh::tessface_uv_textures_iterator l;
for(b_mesh.tessface_uv_textures.begin(l); l != b_mesh.tessface_uv_textures.end(); ++l) {
bool active_render = l->active_render();
AttributeStandard std = (active_render)? ATTR_STD_UV: ATTR_STD_NONE;
ustring name = ustring(l->name().c_str());
/* UV map */
if(mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std)) {
Attribute *attr;
if(active_render)
attr = mesh->attributes.add(std, name);
else
attr = mesh->attributes.add(name, TypeDesc::TypePoint, ATTR_ELEMENT_CORNER);
BL::MeshTextureFaceLayer::data_iterator t;
float3 *fdata = attr->data_float3();
size_t i = 0;
for(l->data.begin(t); t != l->data.end(); ++t, ++i) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv2());
fdata[2] = get_float3(t->uv3());
fdata += 3;
if(nverts[i] == 4) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv3());
fdata[2] = get_float3(t->uv4());
fdata += 3;
}
}
}
/* UV tangent */
std = (active_render)? ATTR_STD_UV_TANGENT: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent").c_str());
if(mesh->need_attribute(scene, name) || (active_render && mesh->need_attribute(scene, std))) {
std = (active_render)? ATTR_STD_UV_TANGENT_SIGN: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent_sign").c_str());
bool need_sign = (mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std));
mikk_compute_tangents(b_mesh, &(*l), mesh, nverts, need_sign, active_render);
}
}
}
else if(mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
mikk_compute_tangents(b_mesh, NULL, mesh, nverts, need_sign, true);
}
}
/* Create vertex pointiness attributes. */
static void attr_create_pointiness(Scene *scene,
Mesh *mesh,
BL::Mesh b_mesh)
{
if(mesh->need_attribute(scene, ATTR_STD_POINTINESS)) {
const int numverts = b_mesh.vertices.length();
Attribute *attr = mesh->attributes.add(ATTR_STD_POINTINESS);
float *data = attr->data_float();
int *counter = new int[numverts];
float *raw_data = new float[numverts];
float3 *edge_accum = new float3[numverts];
/* Calculate pointiness using single ring neighborhood. */
memset(counter, 0, sizeof(int) * numverts);
memset(raw_data, 0, sizeof(float) * numverts);
memset(edge_accum, 0, sizeof(float3) * numverts);
BL::Mesh::edges_iterator e;
int i = 0;
for(b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++i) {
int v0 = b_mesh.edges[i].vertices()[0],
v1 = b_mesh.edges[i].vertices()[1];
float3 co0 = get_float3(b_mesh.vertices[v0].co()),
co1 = get_float3(b_mesh.vertices[v1].co());
float3 edge = normalize(co1 - co0);
edge_accum[v0] += edge;
edge_accum[v1] += -edge;
++counter[v0];
++counter[v1];
}
i = 0;
BL::Mesh::vertices_iterator v;
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v, ++i) {
if(counter[i] > 0) {
float3 normal = get_float3(b_mesh.vertices[i].normal());
float angle = safe_acosf(dot(normal, edge_accum[i] / counter[i]));
raw_data[i] = angle * M_1_PI_F;
}
else {
raw_data[i] = 0.0f;
}
}
/* Blur vertices to approximate 2 ring neighborhood. */
memset(counter, 0, sizeof(int) * numverts);
memcpy(data, raw_data, sizeof(float) * numverts);
i = 0;
for(b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++i) {
int v0 = b_mesh.edges[i].vertices()[0],
v1 = b_mesh.edges[i].vertices()[1];
data[v0] += raw_data[v1];
data[v1] += raw_data[v0];
++counter[v0];
++counter[v1];
}
for(i = 0; i < numverts; ++i) {
data[i] /= counter[i] + 1;
}
delete [] counter;
delete [] raw_data;
delete [] edge_accum;
}
}
/* Create Mesh */
static void create_mesh(Scene *scene, Mesh *mesh, BL::Mesh b_mesh, const vector<uint>& used_shaders)
@@ -356,155 +517,12 @@ static void create_mesh(Scene *scene, Mesh *mesh, BL::Mesh b_mesh, const vector<
nverts[fi] = n;
}
/* create vertex color attributes */
{
BL::Mesh::tessface_vertex_colors_iterator l;
for(b_mesh.tessface_vertex_colors.begin(l); l != b_mesh.tessface_vertex_colors.end(); ++l) {
if(!mesh->need_attribute(scene, ustring(l->name().c_str())))
continue;
Attribute *attr = mesh->attributes.add(
ustring(l->name().c_str()), TypeDesc::TypeColor, ATTR_ELEMENT_CORNER_BYTE);
BL::MeshColorLayer::data_iterator c;
uchar4 *cdata = attr->data_uchar4();
size_t i = 0;
for(l->data.begin(c); c != l->data.end(); ++c, ++i) {
cdata[0] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color1())));
cdata[1] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color2())));
cdata[2] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color3())));
if(nverts[i] == 4) {
cdata[3] = cdata[0];
cdata[4] = cdata[2];
cdata[5] = color_float_to_byte(color_srgb_to_scene_linear(get_float3(c->color4())));
cdata += 6;
}
else
cdata += 3;
}
}
}
/* create vertex pointiness attributes */
/* TODO(sergey): Consider moving all the attribute creation into own
* functions for clarity.
/* Create all needed attributes.
* The calculate functions will check whether they're needed or not.
*/
{
if(mesh->need_attribute(scene, ATTR_STD_POINTINESS)) {
Attribute *attr = mesh->attributes.add(ATTR_STD_POINTINESS);
float *data = attr->data_float();
int *counter = new int[numverts];
float *raw_data = new float[numverts];
float3 *edge_accum = new float3[numverts];
/* Calculate pointiness using single ring neighborhood. */
memset(counter, 0, sizeof(int) * numverts);
memset(raw_data, 0, sizeof(float) * numverts);
memset(edge_accum, 0, sizeof(float3) * numverts);
BL::Mesh::edges_iterator e;
i = 0;
for(b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++i) {
int v0 = b_mesh.edges[i].vertices()[0],
v1 = b_mesh.edges[i].vertices()[1];
float3 co0 = get_float3(b_mesh.vertices[v0].co()),
co1 = get_float3(b_mesh.vertices[v1].co());
float3 edge = normalize(co1 - co0);
edge_accum[v0] += edge;
edge_accum[v1] += -edge;
++counter[v0];
++counter[v1];
}
i = 0;
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v, ++i) {
if(counter[i] > 0) {
float3 normal = get_float3(b_mesh.vertices[i].normal());
float angle = safe_acosf(dot(normal, edge_accum[i] / counter[i]));
raw_data[i] = angle * M_1_PI_F;
}
else {
raw_data[i] = 0.0f;
}
}
/* Blur vertices to approximate 2 ring neighborhood. */
memset(counter, 0, sizeof(int) * numverts);
memcpy(data, raw_data, sizeof(float) * numverts);
i = 0;
for(b_mesh.edges.begin(e); e != b_mesh.edges.end(); ++e, ++i) {
int v0 = b_mesh.edges[i].vertices()[0],
v1 = b_mesh.edges[i].vertices()[1];
data[v0] += raw_data[v1];
data[v1] += raw_data[v0];
++counter[v0];
++counter[v1];
}
for(i = 0; i < numverts; ++i) {
data[i] /= counter[i] + 1;
}
delete [] counter;
delete [] raw_data;
delete [] edge_accum;
}
}
/* create uv map attributes */
if (b_mesh.tessface_uv_textures.length() != 0) {
BL::Mesh::tessface_uv_textures_iterator l;
for(b_mesh.tessface_uv_textures.begin(l); l != b_mesh.tessface_uv_textures.end(); ++l) {
bool active_render = l->active_render();
AttributeStandard std = (active_render)? ATTR_STD_UV: ATTR_STD_NONE;
ustring name = ustring(l->name().c_str());
/* UV map */
if(mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std)) {
Attribute *attr;
if(active_render)
attr = mesh->attributes.add(std, name);
else
attr = mesh->attributes.add(name, TypeDesc::TypePoint, ATTR_ELEMENT_CORNER);
BL::MeshTextureFaceLayer::data_iterator t;
float3 *fdata = attr->data_float3();
size_t i = 0;
for(l->data.begin(t); t != l->data.end(); ++t, ++i) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv2());
fdata[2] = get_float3(t->uv3());
fdata += 3;
if(nverts[i] == 4) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv3());
fdata[2] = get_float3(t->uv4());
fdata += 3;
}
}
}
/* UV tangent */
std = (active_render)? ATTR_STD_UV_TANGENT: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent").c_str());
if(mesh->need_attribute(scene, name) || (active_render && mesh->need_attribute(scene, std))) {
std = (active_render)? ATTR_STD_UV_TANGENT_SIGN: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent_sign").c_str());
bool need_sign = (mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std));
mikk_compute_tangents(b_mesh, &(*l), mesh, nverts, need_sign, active_render);
}
}
}
else if(mesh->need_attribute(scene, ATTR_STD_UV_TANGENT)) {
bool need_sign = mesh->need_attribute(scene, ATTR_STD_UV_TANGENT_SIGN);
mikk_compute_tangents(b_mesh, NULL, mesh, nverts, need_sign, true);
}
attr_create_vertex_color(scene, mesh, b_mesh, nverts);
attr_create_uv_map(scene, mesh, b_mesh, nverts);
attr_create_pointiness(scene, mesh, b_mesh);
/* for volume objects, create a matrix to transform from object space to
* mesh texture space. this does not work with deformations but that can