mathutils module methods only contained matrix constructors, move these to matrix class methods since this is acceptable in python. eg: dict.fromkeys() and groups them more logically.

mathutils.RotationMatrix -> mathutils.Matrix.Rotation
 mathutils.ScaleMatrix -> mathutils.Matrix.Scale
 mathutils.ShearMatrix -> mathutils.Matrix.Shear
 mathutils.TranslationMatrix -> mathutils.Matrix.Translation
 mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
This commit is contained in:
2010-08-11 16:40:36 +00:00
parent ab8ccaa709
commit 556b615cf8
12 changed files with 478 additions and 464 deletions

View File

@@ -46,6 +46,13 @@
* - Vector.toTrackQuat --> Vector.to_track_quat
* - Quaternion * Quaternion --> cross product (not dot product)
*
* moved into class functions.
* - Mathutils.RotationMatrix -> mathutils.Matrix.Rotation
* - Mathutils.ScaleMatrix -> mathutils.Matrix.Scale
* - Mathutils.ShearMatrix -> mathutils.Matrix.Shear
* - Mathutils.TranslationMatrix -> mathutils.Matrix.Translation
* - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
*
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
*/
@@ -94,434 +101,7 @@ int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *
}
//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_RotationMatrix_doc[] =
".. function:: RotationMatrix(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_TranslationMatrix_doc[] =
".. function:: TranslationMatrix(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
}
//----------------------------------mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_ScaleMatrix_doc[] =
".. function:: ScaleMatrix(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
//----------------------------------mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_ShearMatrix_doc[] =
".. function:: ShearMatrix(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
/* Utility functions */
@@ -647,11 +227,6 @@ void BaseMathObject_dealloc(BaseMathObject * self)
/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef M_Mathutils_methods[] = {
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
{NULL, NULL, 0, NULL}
};

View File

@@ -181,6 +181,438 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
/*-----------------------CLASS-METHODS----------------------------*/
//----------------------------------mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Rotation_doc[] =
".. classmethod:: Rotation(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Translation_doc[] =
".. classmethod:: Translation(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Scale_doc[] =
".. classmethod:: Scale(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_OrthoProjection_doc[] =
".. classmethod:: OrthoProjection(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Shear_doc[] =
".. classmethod:: Shear(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant(MatrixObject * self)
{
@@ -1326,6 +1758,13 @@ static struct PyMethodDef Matrix_methods[] = {
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
/* class methods */
{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
{NULL, NULL, 0, NULL}
};