mathutils module methods only contained matrix constructors, move these to matrix class methods since this is acceptable in python. eg: dict.fromkeys() and groups them more logically.
mathutils.RotationMatrix -> mathutils.Matrix.Rotation mathutils.ScaleMatrix -> mathutils.Matrix.Scale mathutils.ShearMatrix -> mathutils.Matrix.Shear mathutils.TranslationMatrix -> mathutils.Matrix.Translation mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
This commit is contained in:
@@ -55,7 +55,7 @@ import math # math.pi
|
|||||||
import shutil # for file copying
|
import shutil # for file copying
|
||||||
|
|
||||||
import bpy
|
import bpy
|
||||||
from mathutils import Vector, Euler, Matrix, RotationMatrix
|
from mathutils import Vector, Euler, Matrix
|
||||||
|
|
||||||
def copy_file(source, dest):
|
def copy_file(source, dest):
|
||||||
# XXX - remove, can use shutil
|
# XXX - remove, can use shutil
|
||||||
@@ -107,19 +107,19 @@ def eulerRadToDeg(eul):
|
|||||||
mtx4_identity = Matrix()
|
mtx4_identity = Matrix()
|
||||||
|
|
||||||
# testing
|
# testing
|
||||||
mtx_x90 = RotationMatrix( math.pi/2, 3, 'X') # used
|
mtx_x90 = Matrix.Rotation( math.pi/2, 3, 'X') # used
|
||||||
#mtx_x90n = RotationMatrix(-90, 3, 'x')
|
#mtx_x90n = Matrix.Rotation(-90, 3, 'x')
|
||||||
#mtx_y90 = RotationMatrix( 90, 3, 'y')
|
#mtx_y90 = Matrix.Rotation( 90, 3, 'y')
|
||||||
#mtx_y90n = RotationMatrix(-90, 3, 'y')
|
#mtx_y90n = Matrix.Rotation(-90, 3, 'y')
|
||||||
#mtx_z90 = RotationMatrix( 90, 3, 'z')
|
#mtx_z90 = Matrix.Rotation( 90, 3, 'z')
|
||||||
#mtx_z90n = RotationMatrix(-90, 3, 'z')
|
#mtx_z90n = Matrix.Rotation(-90, 3, 'z')
|
||||||
|
|
||||||
#mtx4_x90 = RotationMatrix( 90, 4, 'x')
|
#mtx4_x90 = Matrix.Rotation( 90, 4, 'x')
|
||||||
mtx4_x90n = RotationMatrix(-math.pi/2, 4, 'X') # used
|
mtx4_x90n = Matrix.Rotation(-math.pi/2, 4, 'X') # used
|
||||||
#mtx4_y90 = RotationMatrix( 90, 4, 'y')
|
#mtx4_y90 = Matrix.Rotation( 90, 4, 'y')
|
||||||
mtx4_y90n = RotationMatrix(-math.pi/2, 4, 'Y') # used
|
mtx4_y90n = Matrix.Rotation(-math.pi/2, 4, 'Y') # used
|
||||||
mtx4_z90 = RotationMatrix( math.pi/2, 4, 'Z') # used
|
mtx4_z90 = Matrix.Rotation( math.pi/2, 4, 'Z') # used
|
||||||
mtx4_z90n = RotationMatrix(-math.pi/2, 4, 'Z') # used
|
mtx4_z90n = Matrix.Rotation(-math.pi/2, 4, 'Z') # used
|
||||||
|
|
||||||
# def strip_path(p):
|
# def strip_path(p):
|
||||||
# return p.split('\\')[-1].split('/')[-1]
|
# return p.split('\\')[-1].split('/')[-1]
|
||||||
@@ -562,7 +562,7 @@ def write(filename, batch_objects = None, \
|
|||||||
elif type =='CAMERA':
|
elif type =='CAMERA':
|
||||||
# elif ob and type =='Camera':
|
# elif ob and type =='Camera':
|
||||||
y = matrix_rot * Vector((0.0, 1.0, 0.0))
|
y = matrix_rot * Vector((0.0, 1.0, 0.0))
|
||||||
matrix_rot = RotationMatrix(math.pi/2, 3, y) * matrix_rot
|
matrix_rot = Matrix.Rotation(math.pi/2, 3, y) * matrix_rot
|
||||||
|
|
||||||
return matrix_rot
|
return matrix_rot
|
||||||
|
|
||||||
@@ -664,7 +664,7 @@ def write(filename, batch_objects = None, \
|
|||||||
rot = tuple(matrix_rot.to_euler())
|
rot = tuple(matrix_rot.to_euler())
|
||||||
elif ob and ob.type =='Camera':
|
elif ob and ob.type =='Camera':
|
||||||
y = matrix_rot * Vector((0.0, 1.0, 0.0))
|
y = matrix_rot * Vector((0.0, 1.0, 0.0))
|
||||||
matrix_rot = RotationMatrix(math.pi/2, 3, y) * matrix_rot
|
matrix_rot = Matrix.Rotation(math.pi/2, 3, y) * matrix_rot
|
||||||
rot = tuple(matrix_rot.to_euler())
|
rot = tuple(matrix_rot.to_euler())
|
||||||
else:
|
else:
|
||||||
rot = tuple(matrix_rot.to_euler())
|
rot = tuple(matrix_rot.to_euler())
|
||||||
|
|||||||
@@ -363,7 +363,7 @@ def write_file(filepath, objects, scene,
|
|||||||
file.write('mtllib %s\n' % ( mtlfilepath.split('\\')[-1].split('/')[-1] ))
|
file.write('mtllib %s\n' % ( mtlfilepath.split('\\')[-1].split('/')[-1] ))
|
||||||
|
|
||||||
if EXPORT_ROTX90:
|
if EXPORT_ROTX90:
|
||||||
mat_xrot90= mathutils.RotationMatrix(-math.pi/2, 4, 'X')
|
mat_xrot90= mathutils.Matrix.Rotation(-math.pi/2, 4, 'X')
|
||||||
|
|
||||||
# Initialize totals, these are updated each object
|
# Initialize totals, these are updated each object
|
||||||
totverts = totuvco = totno = 1
|
totverts = totuvco = totno = 1
|
||||||
|
|||||||
@@ -81,7 +81,7 @@ from export_3ds import create_derived_objects, free_derived_objects
|
|||||||
|
|
||||||
#
|
#
|
||||||
DEG2RAD=0.017453292519943295
|
DEG2RAD=0.017453292519943295
|
||||||
MATWORLD= mathutils.RotationMatrix(-90, 4, 'X')
|
MATWORLD= mathutils.Matrix.Rotation(-90, 4, 'X')
|
||||||
|
|
||||||
####################################
|
####################################
|
||||||
# Global Variables
|
# Global Variables
|
||||||
|
|||||||
@@ -23,7 +23,7 @@ from math import radians
|
|||||||
|
|
||||||
import bpy
|
import bpy
|
||||||
import mathutils
|
import mathutils
|
||||||
from mathutils import Vector, Euler, Matrix, RotationMatrix, TranslationMatrix
|
from mathutils import Vector, Euler, Matrix
|
||||||
|
|
||||||
|
|
||||||
class bvh_node_class(object):
|
class bvh_node_class(object):
|
||||||
@@ -78,7 +78,7 @@ MATRIX_IDENTITY_4x4 = Matrix([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0,
|
|||||||
|
|
||||||
def eulerRotate(x, y, z, rot_order):
|
def eulerRotate(x, y, z, rot_order):
|
||||||
# Clamp all values between 0 and 360, values outside this raise an error.
|
# Clamp all values between 0 and 360, values outside this raise an error.
|
||||||
mats = [RotationMatrix(x, 3, 'X'), RotationMatrix(y, 3, 'Y'), RotationMatrix(z, 3, 'Z')]
|
mats = [Matrix.Rotation(x, 3, 'X'), Matrix.Rotation(y, 3, 'Y'), Matrix.Rotation(z, 3, 'Z')]
|
||||||
return (MATRIX_IDENTITY_3x3 * mats[rot_order[0]] * (mats[rot_order[1]] * (mats[rot_order[2]]))).to_euler()
|
return (MATRIX_IDENTITY_3x3 * mats[rot_order[0]] * (mats[rot_order[1]] * (mats[rot_order[2]]))).to_euler()
|
||||||
|
|
||||||
# Should work but doesnt!
|
# Should work but doesnt!
|
||||||
@@ -529,7 +529,7 @@ def bvh_node_dict2armature(context, bvh_nodes, ROT_MODE='XYZ', IMPORT_START_FRAM
|
|||||||
prev_euler[i] = euler
|
prev_euler[i] = euler
|
||||||
|
|
||||||
if bvh_node.has_loc:
|
if bvh_node.has_loc:
|
||||||
pose_bone.location = (bone_rest_matrix_inv * TranslationMatrix(Vector((lx, ly, lz)) - bvh_node.rest_head_local)).translation_part()
|
pose_bone.location = (bone_rest_matrix_inv * Matrix.Translation(Vector((lx, ly, lz)) - bvh_node.rest_head_local)).translation_part()
|
||||||
|
|
||||||
if bvh_node.has_loc:
|
if bvh_node.has_loc:
|
||||||
pose_bone.keyframe_insert("location")
|
pose_bone.keyframe_insert("location")
|
||||||
|
|||||||
@@ -771,7 +771,7 @@ def process_next_chunk(file, previous_chunk, importedObjects, IMAGE_SEARCH):
|
|||||||
#print contextMatrix_rot
|
#print contextMatrix_rot
|
||||||
contextMatrix_rot.invert()
|
contextMatrix_rot.invert()
|
||||||
#print contextMatrix_rot
|
#print contextMatrix_rot
|
||||||
#contextMatrix_tx = Blender.mathutils.TranslationMatrix(0.5 * Blender.mathutils.Vector(data[9:]))
|
#contextMatrix_tx = mathutils.Matrix.Translation(0.5 * Blender.mathutils.Vector(data[9:]))
|
||||||
#contextMatrix_tx.invert()
|
#contextMatrix_tx.invert()
|
||||||
|
|
||||||
#tx.invert()
|
#tx.invert()
|
||||||
|
|||||||
@@ -25,11 +25,11 @@ import mathutils
|
|||||||
def add_object_align_init(context, operator):
|
def add_object_align_init(context, operator):
|
||||||
|
|
||||||
if operator and operator.properties.is_property_set("location") and operator.properties.is_property_set("rotation"):
|
if operator and operator.properties.is_property_set("location") and operator.properties.is_property_set("rotation"):
|
||||||
location = mathutils.TranslationMatrix(mathutils.Vector(operator.properties.location))
|
location = mathutils.Matrix.Translation(mathutils.Vector(operator.properties.location))
|
||||||
rotation = mathutils.Euler(operator.properties.rotation).to_matrix().resize4x4()
|
rotation = mathutils.Euler(operator.properties.rotation).to_matrix().resize4x4()
|
||||||
else:
|
else:
|
||||||
# TODO, local view cursor!
|
# TODO, local view cursor!
|
||||||
location = mathutils.TranslationMatrix(context.scene.cursor_location)
|
location = mathutils.Matrix.Translation(context.scene.cursor_location)
|
||||||
|
|
||||||
if context.user_preferences.edit.object_align == 'VIEW' and context.space_data.type == 'VIEW_3D':
|
if context.user_preferences.edit.object_align == 'VIEW' and context.space_data.type == 'VIEW_3D':
|
||||||
rotation = context.space_data.region_3d.view_matrix.rotation_part().invert().resize4x4()
|
rotation = context.space_data.region_3d.view_matrix.rotation_part().invert().resize4x4()
|
||||||
|
|||||||
@@ -147,7 +147,7 @@ def deform(obj, definitions, base_names, options):
|
|||||||
|
|
||||||
|
|
||||||
def main(obj, bone_definition, base_names, options):
|
def main(obj, bone_definition, base_names, options):
|
||||||
from mathutils import Vector, RotationMatrix
|
from mathutils import Vector, Matrix
|
||||||
from math import radians, pi
|
from math import radians, pi
|
||||||
|
|
||||||
arm = obj.data
|
arm = obj.data
|
||||||
@@ -264,7 +264,7 @@ def main(obj, bone_definition, base_names, options):
|
|||||||
|
|
||||||
# Rotate the rev chain 180 about the by the first bones center point
|
# Rotate the rev chain 180 about the by the first bones center point
|
||||||
pivot = (rv_chain.spine_01_e.head + rv_chain.spine_01_e.tail) * 0.5
|
pivot = (rv_chain.spine_01_e.head + rv_chain.spine_01_e.tail) * 0.5
|
||||||
matrix = RotationMatrix(radians(180), 3, 'X')
|
matrix = Matrix.Rotation(radians(180), 3, 'X')
|
||||||
for i, attr in enumerate(rv_chain.attr_names): # similar to neck
|
for i, attr in enumerate(rv_chain.attr_names): # similar to neck
|
||||||
spine_e = getattr(rv_chain, attr + "_e")
|
spine_e = getattr(rv_chain, attr + "_e")
|
||||||
# use the first bone as the pivot
|
# use the first bone as the pivot
|
||||||
|
|||||||
@@ -22,7 +22,7 @@ import bpy
|
|||||||
from rigify import RigifyError
|
from rigify import RigifyError
|
||||||
from rigify_utils import bone_class_instance, copy_bone_simple
|
from rigify_utils import bone_class_instance, copy_bone_simple
|
||||||
from rna_prop_ui import rna_idprop_ui_prop_get
|
from rna_prop_ui import rna_idprop_ui_prop_get
|
||||||
from mathutils import Vector, RotationMatrix
|
from mathutils import Vector, Matrix
|
||||||
from math import radians, pi
|
from math import radians, pi
|
||||||
|
|
||||||
# not used, defined for completeness
|
# not used, defined for completeness
|
||||||
|
|||||||
@@ -22,7 +22,7 @@
|
|||||||
|
|
||||||
# <pep8 compliant>
|
# <pep8 compliant>
|
||||||
|
|
||||||
from mathutils import Matrix, Vector, RotationMatrix
|
from mathutils import Matrix, Vector
|
||||||
import time
|
import time
|
||||||
import geometry
|
import geometry
|
||||||
import bpy
|
import bpy
|
||||||
@@ -275,15 +275,15 @@ def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1):
|
|||||||
|
|
||||||
# Takes a list of faces that make up a UV island and rotate
|
# Takes a list of faces that make up a UV island and rotate
|
||||||
# until they optimally fit inside a square.
|
# until they optimally fit inside a square.
|
||||||
ROTMAT_2D_POS_90D = RotationMatrix( radians(90.0), 2)
|
ROTMAT_2D_POS_90D = Matrix.Rotation( radians(90.0), 2)
|
||||||
ROTMAT_2D_POS_45D = RotationMatrix( radians(45.0), 2)
|
ROTMAT_2D_POS_45D = Matrix.Rotation( radians(45.0), 2)
|
||||||
|
|
||||||
RotMatStepRotation = []
|
RotMatStepRotation = []
|
||||||
rot_angle = 22.5 #45.0/2
|
rot_angle = 22.5 #45.0/2
|
||||||
while rot_angle > 0.1:
|
while rot_angle > 0.1:
|
||||||
RotMatStepRotation.append([\
|
RotMatStepRotation.append([\
|
||||||
RotationMatrix( radians(rot_angle), 2),\
|
Matrix.Rotation( radians(rot_angle), 2),\
|
||||||
RotationMatrix( radians(-rot_angle), 2)])
|
Matrix.Rotation( radians(-rot_angle), 2)])
|
||||||
|
|
||||||
rot_angle = rot_angle/2.0
|
rot_angle = rot_angle/2.0
|
||||||
|
|
||||||
|
|||||||
@@ -6,7 +6,7 @@
|
|||||||
# for keyboard event comparison
|
# for keyboard event comparison
|
||||||
# import GameKeys
|
# import GameKeys
|
||||||
|
|
||||||
# support for Vector(), Matrix() types and advanced functions like ScaleMatrix(...) and RotationMatrix(...)
|
# support for Vector(), Matrix() types and advanced functions like Matrix.Scale(...) and Matrix.Rotation(...)
|
||||||
# import mathutils
|
# import mathutils
|
||||||
|
|
||||||
# for functions like getWindowWidth(), getWindowHeight()
|
# for functions like getWindowWidth(), getWindowHeight()
|
||||||
|
|||||||
@@ -46,6 +46,13 @@
|
|||||||
* - Vector.toTrackQuat --> Vector.to_track_quat
|
* - Vector.toTrackQuat --> Vector.to_track_quat
|
||||||
* - Quaternion * Quaternion --> cross product (not dot product)
|
* - Quaternion * Quaternion --> cross product (not dot product)
|
||||||
*
|
*
|
||||||
|
* moved into class functions.
|
||||||
|
* - Mathutils.RotationMatrix -> mathutils.Matrix.Rotation
|
||||||
|
* - Mathutils.ScaleMatrix -> mathutils.Matrix.Scale
|
||||||
|
* - Mathutils.ShearMatrix -> mathutils.Matrix.Shear
|
||||||
|
* - Mathutils.TranslationMatrix -> mathutils.Matrix.Translation
|
||||||
|
* - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
|
||||||
|
*
|
||||||
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
|
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
|
||||||
*/
|
*/
|
||||||
|
|
||||||
@@ -94,434 +101,7 @@ int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *
|
|||||||
}
|
}
|
||||||
|
|
||||||
//----------------------------------MATRIX FUNCTIONS--------------------
|
//----------------------------------MATRIX FUNCTIONS--------------------
|
||||||
//----------------------------------mathutils.RotationMatrix() ----------
|
|
||||||
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
||||||
static char M_Mathutils_RotationMatrix_doc[] =
|
|
||||||
".. function:: RotationMatrix(angle, size, axis)\n"
|
|
||||||
"\n"
|
|
||||||
" Create a matrix representing a rotation.\n"
|
|
||||||
"\n"
|
|
||||||
" :arg angle: The angle of rotation desired, in radians.\n"
|
|
||||||
" :type angle: float\n"
|
|
||||||
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
|
|
||||||
" :type size: int\n"
|
|
||||||
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
|
|
||||||
" :type axis: string or :class:`Vector`\n"
|
|
||||||
" :return: A new rotation matrix.\n"
|
|
||||||
" :rtype: :class:`Matrix`\n";
|
|
||||||
|
|
||||||
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
|
|
||||||
{
|
|
||||||
VectorObject *vec= NULL;
|
|
||||||
char *axis= NULL;
|
|
||||||
int matSize;
|
|
||||||
float angle = 0.0f;
|
|
||||||
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
||||||
|
|
||||||
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(vec && !VectorObject_Check(vec)) {
|
|
||||||
axis= _PyUnicode_AsString((PyObject *)vec);
|
|
||||||
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
/* use the string */
|
|
||||||
vec= NULL;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
while (angle<-(Py_PI*2))
|
|
||||||
angle+=(Py_PI*2);
|
|
||||||
while (angle>(Py_PI*2))
|
|
||||||
angle-=(Py_PI*2);
|
|
||||||
|
|
||||||
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(matSize == 2 && (vec != NULL)) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(vec) {
|
|
||||||
if(vec->size != 3) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!BaseMath_ReadCallback(vec))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/* check for valid vector/axis above */
|
|
||||||
if(vec) {
|
|
||||||
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
|
|
||||||
}
|
|
||||||
else if(matSize == 2) {
|
|
||||||
//2D rotation matrix
|
|
||||||
mat[0] = (float) cos (angle);
|
|
||||||
mat[1] = (float) sin (angle);
|
|
||||||
mat[2] = -((float) sin(angle));
|
|
||||||
mat[3] = (float) cos(angle);
|
|
||||||
} else if(strcmp(axis, "X") == 0) {
|
|
||||||
//rotation around X
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[4] = (float) cos(angle);
|
|
||||||
mat[5] = (float) sin(angle);
|
|
||||||
mat[7] = -((float) sin(angle));
|
|
||||||
mat[8] = (float) cos(angle);
|
|
||||||
} else if(strcmp(axis, "Y") == 0) {
|
|
||||||
//rotation around Y
|
|
||||||
mat[0] = (float) cos(angle);
|
|
||||||
mat[2] = -((float) sin(angle));
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
mat[6] = (float) sin(angle);
|
|
||||||
mat[8] = (float) cos(angle);
|
|
||||||
} else if(strcmp(axis, "Z") == 0) {
|
|
||||||
//rotation around Z
|
|
||||||
mat[0] = (float) cos(angle);
|
|
||||||
mat[1] = (float) sin(angle);
|
|
||||||
mat[3] = -((float) sin(angle));
|
|
||||||
mat[4] = (float) cos(angle);
|
|
||||||
mat[8] = 1.0f;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
/* should never get here */
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(matSize == 4) {
|
|
||||||
//resize matrix
|
|
||||||
mat[10] = mat[8];
|
|
||||||
mat[9] = mat[7];
|
|
||||||
mat[8] = mat[6];
|
|
||||||
mat[7] = 0.0f;
|
|
||||||
mat[6] = mat[5];
|
|
||||||
mat[5] = mat[4];
|
|
||||||
mat[4] = mat[3];
|
|
||||||
mat[3] = 0.0f;
|
|
||||||
}
|
|
||||||
//pass to matrix creation
|
|
||||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
static char M_Mathutils_TranslationMatrix_doc[] =
|
|
||||||
".. function:: TranslationMatrix(vector)\n"
|
|
||||||
"\n"
|
|
||||||
" Create a matrix representing a translation.\n"
|
|
||||||
"\n"
|
|
||||||
" :arg vector: The translation vector.\n"
|
|
||||||
" :type vector: :class:`Vector`\n"
|
|
||||||
" :return: An identity matrix with a translation.\n"
|
|
||||||
" :rtype: :class:`Matrix`\n";
|
|
||||||
|
|
||||||
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
|
|
||||||
{
|
|
||||||
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
||||||
|
|
||||||
if(!VectorObject_Check(vec)) {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(vec->size != 3 && vec->size != 4) {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!BaseMath_ReadCallback(vec))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
//create a identity matrix and add translation
|
|
||||||
unit_m4((float(*)[4]) mat);
|
|
||||||
mat[12] = vec->vec[0];
|
|
||||||
mat[13] = vec->vec[1];
|
|
||||||
mat[14] = vec->vec[2];
|
|
||||||
|
|
||||||
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
|
|
||||||
}
|
|
||||||
//----------------------------------mathutils.ScaleMatrix() -------------
|
|
||||||
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
||||||
static char M_Mathutils_ScaleMatrix_doc[] =
|
|
||||||
".. function:: ScaleMatrix(factor, size, axis)\n"
|
|
||||||
"\n"
|
|
||||||
" Create a matrix representing a scaling.\n"
|
|
||||||
"\n"
|
|
||||||
" :arg factor: The factor of scaling to apply.\n"
|
|
||||||
" :type factor: float\n"
|
|
||||||
" :arg size: The size of the scale matrix to construct [2, 4].\n"
|
|
||||||
" :type size: int\n"
|
|
||||||
" :arg axis: Direction to influence scale. (optional).\n"
|
|
||||||
" :type axis: :class:`Vector`\n"
|
|
||||||
" :return: A new scale matrix.\n"
|
|
||||||
" :rtype: :class:`Matrix`\n";
|
|
||||||
|
|
||||||
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
|
|
||||||
{
|
|
||||||
VectorObject *vec = NULL;
|
|
||||||
float norm = 0.0f, factor;
|
|
||||||
int matSize, x;
|
|
||||||
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
||||||
|
|
||||||
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(vec) {
|
|
||||||
if(vec->size > 2 && matSize == 2) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!BaseMath_ReadCallback(vec))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
}
|
|
||||||
if(vec == NULL) { //scaling along axis
|
|
||||||
if(matSize == 2) {
|
|
||||||
mat[0] = factor;
|
|
||||||
mat[3] = factor;
|
|
||||||
} else {
|
|
||||||
mat[0] = factor;
|
|
||||||
mat[4] = factor;
|
|
||||||
mat[8] = factor;
|
|
||||||
}
|
|
||||||
} else { //scaling in arbitrary direction
|
|
||||||
//normalize arbitrary axis
|
|
||||||
for(x = 0; x < vec->size; x++) {
|
|
||||||
norm += vec->vec[x] * vec->vec[x];
|
|
||||||
}
|
|
||||||
norm = (float) sqrt(norm);
|
|
||||||
for(x = 0; x < vec->size; x++) {
|
|
||||||
vec->vec[x] /= norm;
|
|
||||||
}
|
|
||||||
if(matSize == 2) {
|
|
||||||
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
|
||||||
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
||||||
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
||||||
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
|
||||||
} else {
|
|
||||||
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
|
||||||
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
||||||
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
|
||||||
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
|
||||||
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
|
||||||
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
|
||||||
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
|
||||||
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
|
||||||
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if(matSize == 4) {
|
|
||||||
//resize matrix
|
|
||||||
mat[10] = mat[8];
|
|
||||||
mat[9] = mat[7];
|
|
||||||
mat[8] = mat[6];
|
|
||||||
mat[7] = 0.0f;
|
|
||||||
mat[6] = mat[5];
|
|
||||||
mat[5] = mat[4];
|
|
||||||
mat[4] = mat[3];
|
|
||||||
mat[3] = 0.0f;
|
|
||||||
}
|
|
||||||
//pass to matrix creation
|
|
||||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
||||||
}
|
|
||||||
//----------------------------------mathutils.OrthoProjectionMatrix() ---
|
|
||||||
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
|
||||||
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
|
|
||||||
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
|
|
||||||
"\n"
|
|
||||||
" Create a matrix to represent an orthographic projection.\n"
|
|
||||||
"\n"
|
|
||||||
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
|
|
||||||
" :type plane: string\n"
|
|
||||||
" :arg size: The size of the projection matrix to construct [2, 4].\n"
|
|
||||||
" :type size: int\n"
|
|
||||||
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
|
|
||||||
" :type axis: :class:`Vector`\n"
|
|
||||||
" :return: A new projection matrix.\n"
|
|
||||||
" :rtype: :class:`Matrix`\n";
|
|
||||||
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
|
|
||||||
{
|
|
||||||
VectorObject *vec = NULL;
|
|
||||||
char *plane;
|
|
||||||
int matSize, x;
|
|
||||||
float norm = 0.0f;
|
|
||||||
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
||||||
|
|
||||||
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
|
|
||||||
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(vec) {
|
|
||||||
if(vec->size > 2 && matSize == 2) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!BaseMath_ReadCallback(vec))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
}
|
|
||||||
if(vec == NULL) { //ortho projection onto cardinal plane
|
|
||||||
if((strcmp(plane, "X") == 0) && matSize == 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
|
||||||
mat[3] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[8] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
mat[8] = 1.0f;
|
|
||||||
} else {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
} else { //arbitrary plane
|
|
||||||
//normalize arbitrary axis
|
|
||||||
for(x = 0; x < vec->size; x++) {
|
|
||||||
norm += vec->vec[x] * vec->vec[x];
|
|
||||||
}
|
|
||||||
norm = (float) sqrt(norm);
|
|
||||||
for(x = 0; x < vec->size; x++) {
|
|
||||||
vec->vec[x] /= norm;
|
|
||||||
}
|
|
||||||
if((strcmp(plane, "R") == 0) && matSize == 2) {
|
|
||||||
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
||||||
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
|
||||||
mat[2] = -(vec->vec[0] * vec->vec[1]);
|
|
||||||
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
||||||
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
|
||||||
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
|
||||||
mat[2] = -(vec->vec[0] * vec->vec[2]);
|
|
||||||
mat[3] = -(vec->vec[0] * vec->vec[1]);
|
|
||||||
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
|
|
||||||
mat[5] = -(vec->vec[1] * vec->vec[2]);
|
|
||||||
mat[6] = -(vec->vec[0] * vec->vec[2]);
|
|
||||||
mat[7] = -(vec->vec[1] * vec->vec[2]);
|
|
||||||
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
|
|
||||||
} else {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if(matSize == 4) {
|
|
||||||
//resize matrix
|
|
||||||
mat[10] = mat[8];
|
|
||||||
mat[9] = mat[7];
|
|
||||||
mat[8] = mat[6];
|
|
||||||
mat[7] = 0.0f;
|
|
||||||
mat[6] = mat[5];
|
|
||||||
mat[5] = mat[4];
|
|
||||||
mat[4] = mat[3];
|
|
||||||
mat[3] = 0.0f;
|
|
||||||
}
|
|
||||||
//pass to matrix creation
|
|
||||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
static char M_Mathutils_ShearMatrix_doc[] =
|
|
||||||
".. function:: ShearMatrix(plane, factor, size)\n"
|
|
||||||
"\n"
|
|
||||||
" Create a matrix to represent an shear transformation.\n"
|
|
||||||
"\n"
|
|
||||||
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
|
|
||||||
" :type plane: string\n"
|
|
||||||
" :arg factor: The factor of shear to apply.\n"
|
|
||||||
" :type factor: float\n"
|
|
||||||
" :arg size: The size of the shear matrix to construct [2, 4].\n"
|
|
||||||
" :type size: int\n"
|
|
||||||
" :return: A new shear matrix.\n"
|
|
||||||
" :rtype: :class:`Matrix`\n";
|
|
||||||
|
|
||||||
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
|
|
||||||
{
|
|
||||||
int matSize;
|
|
||||||
char *plane;
|
|
||||||
float factor;
|
|
||||||
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
|
||||||
|
|
||||||
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
|
|
||||||
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
|
||||||
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
if((strcmp(plane, "X") == 0)
|
|
||||||
&& matSize == 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[2] = factor;
|
|
||||||
mat[3] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[1] = factor;
|
|
||||||
mat[3] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
mat[6] = factor;
|
|
||||||
mat[7] = factor;
|
|
||||||
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[3] = factor;
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
mat[5] = factor;
|
|
||||||
mat[8] = 1.0f;
|
|
||||||
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
|
||||||
mat[0] = 1.0f;
|
|
||||||
mat[1] = factor;
|
|
||||||
mat[2] = factor;
|
|
||||||
mat[4] = 1.0f;
|
|
||||||
mat[8] = 1.0f;
|
|
||||||
} else {
|
|
||||||
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if(matSize == 4) {
|
|
||||||
//resize matrix
|
|
||||||
mat[10] = mat[8];
|
|
||||||
mat[9] = mat[7];
|
|
||||||
mat[8] = mat[6];
|
|
||||||
mat[7] = 0.0f;
|
|
||||||
mat[6] = mat[5];
|
|
||||||
mat[5] = mat[4];
|
|
||||||
mat[4] = mat[3];
|
|
||||||
mat[3] = 0.0f;
|
|
||||||
}
|
|
||||||
//pass to matrix creation
|
|
||||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Utility functions */
|
/* Utility functions */
|
||||||
|
|
||||||
@@ -647,11 +227,6 @@ void BaseMathObject_dealloc(BaseMathObject * self)
|
|||||||
|
|
||||||
/*----------------------------MODULE INIT-------------------------*/
|
/*----------------------------MODULE INIT-------------------------*/
|
||||||
struct PyMethodDef M_Mathutils_methods[] = {
|
struct PyMethodDef M_Mathutils_methods[] = {
|
||||||
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
|
|
||||||
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
|
|
||||||
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
|
|
||||||
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
|
|
||||||
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
|
|
||||||
{NULL, NULL, 0, NULL}
|
{NULL, NULL, 0, NULL}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@@ -181,6 +181,438 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|||||||
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
|
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*-----------------------CLASS-METHODS----------------------------*/
|
||||||
|
|
||||||
|
//----------------------------------mathutils.RotationMatrix() ----------
|
||||||
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
||||||
|
static char C_Matrix_Rotation_doc[] =
|
||||||
|
".. classmethod:: Rotation(angle, size, axis)\n"
|
||||||
|
"\n"
|
||||||
|
" Create a matrix representing a rotation.\n"
|
||||||
|
"\n"
|
||||||
|
" :arg angle: The angle of rotation desired, in radians.\n"
|
||||||
|
" :type angle: float\n"
|
||||||
|
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
|
||||||
|
" :type size: int\n"
|
||||||
|
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
|
||||||
|
" :type axis: string or :class:`Vector`\n"
|
||||||
|
" :return: A new rotation matrix.\n"
|
||||||
|
" :rtype: :class:`Matrix`\n";
|
||||||
|
|
||||||
|
static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
|
||||||
|
{
|
||||||
|
VectorObject *vec= NULL;
|
||||||
|
char *axis= NULL;
|
||||||
|
int matSize;
|
||||||
|
float angle = 0.0f;
|
||||||
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
||||||
|
|
||||||
|
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(vec && !VectorObject_Check(vec)) {
|
||||||
|
axis= _PyUnicode_AsString((PyObject *)vec);
|
||||||
|
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
/* use the string */
|
||||||
|
vec= NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
while (angle<-(Py_PI*2))
|
||||||
|
angle+=(Py_PI*2);
|
||||||
|
while (angle>(Py_PI*2))
|
||||||
|
angle-=(Py_PI*2);
|
||||||
|
|
||||||
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(matSize == 2 && (vec != NULL)) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(vec) {
|
||||||
|
if(vec->size != 3) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!BaseMath_ReadCallback(vec))
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/* check for valid vector/axis above */
|
||||||
|
if(vec) {
|
||||||
|
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
|
||||||
|
}
|
||||||
|
else if(matSize == 2) {
|
||||||
|
//2D rotation matrix
|
||||||
|
mat[0] = (float) cos (angle);
|
||||||
|
mat[1] = (float) sin (angle);
|
||||||
|
mat[2] = -((float) sin(angle));
|
||||||
|
mat[3] = (float) cos(angle);
|
||||||
|
} else if(strcmp(axis, "X") == 0) {
|
||||||
|
//rotation around X
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[4] = (float) cos(angle);
|
||||||
|
mat[5] = (float) sin(angle);
|
||||||
|
mat[7] = -((float) sin(angle));
|
||||||
|
mat[8] = (float) cos(angle);
|
||||||
|
} else if(strcmp(axis, "Y") == 0) {
|
||||||
|
//rotation around Y
|
||||||
|
mat[0] = (float) cos(angle);
|
||||||
|
mat[2] = -((float) sin(angle));
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
mat[6] = (float) sin(angle);
|
||||||
|
mat[8] = (float) cos(angle);
|
||||||
|
} else if(strcmp(axis, "Z") == 0) {
|
||||||
|
//rotation around Z
|
||||||
|
mat[0] = (float) cos(angle);
|
||||||
|
mat[1] = (float) sin(angle);
|
||||||
|
mat[3] = -((float) sin(angle));
|
||||||
|
mat[4] = (float) cos(angle);
|
||||||
|
mat[8] = 1.0f;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
/* should never get here */
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(matSize == 4) {
|
||||||
|
//resize matrix
|
||||||
|
mat[10] = mat[8];
|
||||||
|
mat[9] = mat[7];
|
||||||
|
mat[8] = mat[6];
|
||||||
|
mat[7] = 0.0f;
|
||||||
|
mat[6] = mat[5];
|
||||||
|
mat[5] = mat[4];
|
||||||
|
mat[4] = mat[3];
|
||||||
|
mat[3] = 0.0f;
|
||||||
|
}
|
||||||
|
//pass to matrix creation
|
||||||
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static char C_Matrix_Translation_doc[] =
|
||||||
|
".. classmethod:: Translation(vector)\n"
|
||||||
|
"\n"
|
||||||
|
" Create a matrix representing a translation.\n"
|
||||||
|
"\n"
|
||||||
|
" :arg vector: The translation vector.\n"
|
||||||
|
" :type vector: :class:`Vector`\n"
|
||||||
|
" :return: An identity matrix with a translation.\n"
|
||||||
|
" :rtype: :class:`Matrix`\n";
|
||||||
|
|
||||||
|
static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
|
||||||
|
{
|
||||||
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
||||||
|
|
||||||
|
if(!VectorObject_Check(vec)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(vec->size != 3 && vec->size != 4) {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!BaseMath_ReadCallback(vec))
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
//create a identity matrix and add translation
|
||||||
|
unit_m4((float(*)[4]) mat);
|
||||||
|
mat[12] = vec->vec[0];
|
||||||
|
mat[13] = vec->vec[1];
|
||||||
|
mat[14] = vec->vec[2];
|
||||||
|
|
||||||
|
return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
|
||||||
|
}
|
||||||
|
//----------------------------------mathutils.ScaleMatrix() -------------
|
||||||
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
||||||
|
static char C_Matrix_Scale_doc[] =
|
||||||
|
".. classmethod:: Scale(factor, size, axis)\n"
|
||||||
|
"\n"
|
||||||
|
" Create a matrix representing a scaling.\n"
|
||||||
|
"\n"
|
||||||
|
" :arg factor: The factor of scaling to apply.\n"
|
||||||
|
" :type factor: float\n"
|
||||||
|
" :arg size: The size of the scale matrix to construct [2, 4].\n"
|
||||||
|
" :type size: int\n"
|
||||||
|
" :arg axis: Direction to influence scale. (optional).\n"
|
||||||
|
" :type axis: :class:`Vector`\n"
|
||||||
|
" :return: A new scale matrix.\n"
|
||||||
|
" :rtype: :class:`Matrix`\n";
|
||||||
|
|
||||||
|
static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
|
||||||
|
{
|
||||||
|
VectorObject *vec = NULL;
|
||||||
|
float norm = 0.0f, factor;
|
||||||
|
int matSize, x;
|
||||||
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
||||||
|
|
||||||
|
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(vec) {
|
||||||
|
if(vec->size > 2 && matSize == 2) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!BaseMath_ReadCallback(vec))
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
}
|
||||||
|
if(vec == NULL) { //scaling along axis
|
||||||
|
if(matSize == 2) {
|
||||||
|
mat[0] = factor;
|
||||||
|
mat[3] = factor;
|
||||||
|
} else {
|
||||||
|
mat[0] = factor;
|
||||||
|
mat[4] = factor;
|
||||||
|
mat[8] = factor;
|
||||||
|
}
|
||||||
|
} else { //scaling in arbitrary direction
|
||||||
|
//normalize arbitrary axis
|
||||||
|
for(x = 0; x < vec->size; x++) {
|
||||||
|
norm += vec->vec[x] * vec->vec[x];
|
||||||
|
}
|
||||||
|
norm = (float) sqrt(norm);
|
||||||
|
for(x = 0; x < vec->size; x++) {
|
||||||
|
vec->vec[x] /= norm;
|
||||||
|
}
|
||||||
|
if(matSize == 2) {
|
||||||
|
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
||||||
|
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
||||||
|
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
||||||
|
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
||||||
|
} else {
|
||||||
|
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
|
||||||
|
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
||||||
|
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
||||||
|
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
|
||||||
|
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
|
||||||
|
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
||||||
|
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
|
||||||
|
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
|
||||||
|
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(matSize == 4) {
|
||||||
|
//resize matrix
|
||||||
|
mat[10] = mat[8];
|
||||||
|
mat[9] = mat[7];
|
||||||
|
mat[8] = mat[6];
|
||||||
|
mat[7] = 0.0f;
|
||||||
|
mat[6] = mat[5];
|
||||||
|
mat[5] = mat[4];
|
||||||
|
mat[4] = mat[3];
|
||||||
|
mat[3] = 0.0f;
|
||||||
|
}
|
||||||
|
//pass to matrix creation
|
||||||
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
|
||||||
|
}
|
||||||
|
//----------------------------------mathutils.OrthoProjectionMatrix() ---
|
||||||
|
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
||||||
|
static char C_Matrix_OrthoProjection_doc[] =
|
||||||
|
".. classmethod:: OrthoProjection(plane, size, axis)\n"
|
||||||
|
"\n"
|
||||||
|
" Create a matrix to represent an orthographic projection.\n"
|
||||||
|
"\n"
|
||||||
|
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
|
||||||
|
" :type plane: string\n"
|
||||||
|
" :arg size: The size of the projection matrix to construct [2, 4].\n"
|
||||||
|
" :type size: int\n"
|
||||||
|
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
|
||||||
|
" :type axis: :class:`Vector`\n"
|
||||||
|
" :return: A new projection matrix.\n"
|
||||||
|
" :rtype: :class:`Matrix`\n";
|
||||||
|
static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
|
||||||
|
{
|
||||||
|
VectorObject *vec = NULL;
|
||||||
|
char *plane;
|
||||||
|
int matSize, x;
|
||||||
|
float norm = 0.0f;
|
||||||
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
||||||
|
|
||||||
|
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(vec) {
|
||||||
|
if(vec->size > 2 && matSize == 2) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!BaseMath_ReadCallback(vec))
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
}
|
||||||
|
if(vec == NULL) { //ortho projection onto cardinal plane
|
||||||
|
if((strcmp(plane, "X") == 0) && matSize == 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
||||||
|
mat[3] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[8] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
mat[8] = 1.0f;
|
||||||
|
} else {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
} else { //arbitrary plane
|
||||||
|
//normalize arbitrary axis
|
||||||
|
for(x = 0; x < vec->size; x++) {
|
||||||
|
norm += vec->vec[x] * vec->vec[x];
|
||||||
|
}
|
||||||
|
norm = (float) sqrt(norm);
|
||||||
|
for(x = 0; x < vec->size; x++) {
|
||||||
|
vec->vec[x] /= norm;
|
||||||
|
}
|
||||||
|
if((strcmp(plane, "R") == 0) && matSize == 2) {
|
||||||
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
||||||
|
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
||||||
|
mat[2] = -(vec->vec[0] * vec->vec[1]);
|
||||||
|
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
|
||||||
|
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
|
||||||
|
mat[1] = -(vec->vec[0] * vec->vec[1]);
|
||||||
|
mat[2] = -(vec->vec[0] * vec->vec[2]);
|
||||||
|
mat[3] = -(vec->vec[0] * vec->vec[1]);
|
||||||
|
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
|
||||||
|
mat[5] = -(vec->vec[1] * vec->vec[2]);
|
||||||
|
mat[6] = -(vec->vec[0] * vec->vec[2]);
|
||||||
|
mat[7] = -(vec->vec[1] * vec->vec[2]);
|
||||||
|
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
|
||||||
|
} else {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(matSize == 4) {
|
||||||
|
//resize matrix
|
||||||
|
mat[10] = mat[8];
|
||||||
|
mat[9] = mat[7];
|
||||||
|
mat[8] = mat[6];
|
||||||
|
mat[7] = 0.0f;
|
||||||
|
mat[6] = mat[5];
|
||||||
|
mat[5] = mat[4];
|
||||||
|
mat[4] = mat[3];
|
||||||
|
mat[3] = 0.0f;
|
||||||
|
}
|
||||||
|
//pass to matrix creation
|
||||||
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
|
||||||
|
}
|
||||||
|
|
||||||
|
static char C_Matrix_Shear_doc[] =
|
||||||
|
".. classmethod:: Shear(plane, factor, size)\n"
|
||||||
|
"\n"
|
||||||
|
" Create a matrix to represent an shear transformation.\n"
|
||||||
|
"\n"
|
||||||
|
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
|
||||||
|
" :type plane: string\n"
|
||||||
|
" :arg factor: The factor of shear to apply.\n"
|
||||||
|
" :type factor: float\n"
|
||||||
|
" :arg size: The size of the shear matrix to construct [2, 4].\n"
|
||||||
|
" :type size: int\n"
|
||||||
|
" :return: A new shear matrix.\n"
|
||||||
|
" :rtype: :class:`Matrix`\n";
|
||||||
|
|
||||||
|
static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
|
||||||
|
{
|
||||||
|
int matSize;
|
||||||
|
char *plane;
|
||||||
|
float factor;
|
||||||
|
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
|
||||||
|
|
||||||
|
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
|
||||||
|
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
||||||
|
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if((strcmp(plane, "X") == 0)
|
||||||
|
&& matSize == 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[2] = factor;
|
||||||
|
mat[3] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[1] = factor;
|
||||||
|
mat[3] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
mat[6] = factor;
|
||||||
|
mat[7] = factor;
|
||||||
|
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[3] = factor;
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
mat[5] = factor;
|
||||||
|
mat[8] = 1.0f;
|
||||||
|
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
|
||||||
|
mat[0] = 1.0f;
|
||||||
|
mat[1] = factor;
|
||||||
|
mat[2] = factor;
|
||||||
|
mat[4] = 1.0f;
|
||||||
|
mat[8] = 1.0f;
|
||||||
|
} else {
|
||||||
|
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
if(matSize == 4) {
|
||||||
|
//resize matrix
|
||||||
|
mat[10] = mat[8];
|
||||||
|
mat[9] = mat[7];
|
||||||
|
mat[8] = mat[6];
|
||||||
|
mat[7] = 0.0f;
|
||||||
|
mat[6] = mat[5];
|
||||||
|
mat[5] = mat[4];
|
||||||
|
mat[4] = mat[3];
|
||||||
|
mat[3] = 0.0f;
|
||||||
|
}
|
||||||
|
//pass to matrix creation
|
||||||
|
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
|
||||||
|
}
|
||||||
|
|
||||||
/* assumes rowsize == colsize is checked and the read callback has run */
|
/* assumes rowsize == colsize is checked and the read callback has run */
|
||||||
static float matrix_determinant(MatrixObject * self)
|
static float matrix_determinant(MatrixObject * self)
|
||||||
{
|
{
|
||||||
@@ -1326,6 +1758,13 @@ static struct PyMethodDef Matrix_methods[] = {
|
|||||||
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
|
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
|
||||||
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
||||||
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
|
||||||
|
|
||||||
|
/* class methods */
|
||||||
|
{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
|
||||||
|
{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
|
||||||
|
{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
|
||||||
|
{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
|
||||||
|
{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
|
||||||
{NULL, NULL, 0, NULL}
|
{NULL, NULL, 0, NULL}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user