Multires: Refactor propagation to the higher levels

Now it is forumlated in terms of deltas, and consists of the
following steps:

- Original displacement at the reshape level are being backed up.
- New displacement is being written by the reshape routines.
- Delta of the displacement is calculated.
- Deltas are propagated to the higher levels, which also includes
  their interpolation/
- Original displacement is restored.
- New interpolated displacements are added to the original ones.

This is a base ground for the upcoming change related on using
Catmull-Clark smoothing for the deltas instead of linear
interpolation. Currently is no changes for artists, just preparing
for upcoming work.
This commit is contained in:
2018-11-06 11:44:02 +01:00
parent c3149a712c
commit 5d6ec23e3e

View File

@@ -325,22 +325,122 @@ static void multires_reshape_vertex_from_final_data(
*/
typedef struct MultiresPropagateData {
int reshape_level;
int top_level;
/* Number of displacement grids. */
int num_grids;
/* Resolution level up to which displacement is known. */
int reshape_level;
/* Resolution up to which propagation is happening, affecting all the
* levels in [reshape_level + 1, top_level].
*/
int top_level;
/* Grid sizes at the corresponding levels. */
int reshape_grid_size;
int top_grid_size;
MDisps *old_displacement_grids;
MDisps *new_displacement_grids;
/* Keys to access CCG at different levels. */
CCGKey reshape_level_key;
CCGKey top_level_key;
/* Original grid data, before any updates for reshape.
* Contains data at the reshape_level resolution level.
*/
CCGElem **orig_grids_data;
/* Custom data layers from a coarse mesh. */
MDisps *mdisps;
GridPaintMask *grid_paint_mask;
} MultiresPropagateData;
typedef struct MultiresPropagateCornerData {
float old_coord[3];
float new_coord[3];
float coord_delta[3];
float mask;
} MultiresPropagateCornerData;
static CCGElem **allocate_grids(CCGKey *key, int num_grids)
{
CCGElem **grids = MEM_calloc_arrayN(
num_grids, sizeof(CCGElem *), "reshape grids*");
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
grids[grid_index] = MEM_calloc_arrayN(
key->elem_size,
key->grid_area,
"reshape orig_grids_data elems");
}
return grids;
}
static void free_grids(CCGElem **grids, int num_grids)
{
if (grids == NULL) {
return;
}
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
MEM_freeN(grids[grid_index]);
}
MEM_freeN(grids);
}
/* Initialize element sizes and offsets. */
static void multires_reshape_init_key_layers(
CCGKey *key,
const MultiresPropagateData *data)
{
key->elem_size = 3 * sizeof(float);
if (data->grid_paint_mask != NULL) {
key->mask_offset = 3 * sizeof(float);
key->elem_size += sizeof(float);
key->has_mask = true;
}
else {
key->mask_offset = -1;
key->has_mask = false;
}
/* We never have normals in original grids. */
key->normal_offset = -1;
key->has_normals = false;
}
/* Initialize key used to access reshape grids at given level. */
static void multires_reshape_init_level_key(
CCGKey *key,
const MultiresPropagateData *data,
const int level)
{
key->level = level;
/* Init layers. */
multires_reshape_init_key_layers(key, data);
/* By default, only 3 floats for coordinate, */
key->grid_size = BKE_subdiv_grid_size_from_level(key->level);
key->grid_area = key->grid_size * key->grid_size;
key->grid_bytes = key->elem_size * key->grid_area;
}
static void multires_reshape_store_original_grids(
MultiresPropagateData *data)
{
const int num_grids = data->num_grids;
/* Original data to be backed up. */
const MDisps *mdisps = data->mdisps;
const GridPaintMask *grid_paint_mask = data->grid_paint_mask;
/* Allocate grids for backup. */
CCGKey *orig_key = &data->reshape_level_key;
CCGElem **orig_grids_data = allocate_grids(orig_key, num_grids);
/* Fill in grids. */
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *orig_grid = orig_grids_data[grid_index];
for (int y = 0; y < orig_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < orig_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * top_grid_size + top_x;
memcpy(CCG_grid_elem_co(orig_key, orig_grid, x, y),
mdisps[grid_index].disps[top_index],
sizeof(float) * 3);
if (orig_key->has_mask) {
*CCG_grid_elem_mask(orig_key, orig_grid, x, y) =
grid_paint_mask[grid_index].data[top_index];
}
}
}
}
/* Store in the context. */
data->orig_grids_data = orig_grids_data;
}
static void multires_reshape_propagate_prepare(
MultiresPropagateData *data,
@@ -349,37 +449,28 @@ static void multires_reshape_propagate_prepare(
const int top_level)
{
BLI_assert(reshape_level <= top_level);
data->old_displacement_grids = NULL;
memset(data, 0, sizeof(*data));
data->num_grids = coarse_mesh->totloop;
data->reshape_level = reshape_level;
data->top_level = top_level;
if (reshape_level == top_level) {
/* Nothing to do, reshape will happen on the whole grid content. */
return;
}
const int num_grids = coarse_mesh->totloop;
MDisps *mdisps = CustomData_get_layer(&coarse_mesh->ldata, CD_MDISPS);
MDisps *old_mdisps = MEM_dupallocN(mdisps);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
MDisps *displacement_grid = &mdisps[grid_index];
MDisps *old_displacement_grid = &old_mdisps[grid_index];
old_displacement_grid->totdisp = displacement_grid->totdisp;
old_displacement_grid->level = displacement_grid->level;
if (displacement_grid->disps) {
displacement_grid->disps = MEM_dupallocN(displacement_grid->disps);
}
else {
old_displacement_grid->disps = NULL;
}
/* TODO(sergey): This might be needed for proper propagation. */
old_displacement_grid->hidden = NULL;
}
data->reshape_level = reshape_level;
data->top_level = top_level;
data->num_grids = num_grids;
data->reshape_grid_size = BKE_subdiv_grid_size_from_level(reshape_level);
data->top_grid_size = BKE_subdiv_grid_size_from_level(top_level);
data->old_displacement_grids = old_mdisps;
data->new_displacement_grids = mdisps;
data->mdisps = CustomData_get_layer(&coarse_mesh->ldata, CD_MDISPS);
data->grid_paint_mask =
CustomData_get_layer(&coarse_mesh->ldata, CD_GRID_PAINT_MASK);
data->top_grid_size = BKE_subdiv_grid_size_from_level(top_level);
data->reshape_grid_size = BKE_subdiv_grid_size_from_level(reshape_level);
/* Initialize keys to access CCG at different levels. */
multires_reshape_init_level_key(
&data->reshape_level_key, data, data->reshape_level);
multires_reshape_init_level_key(
&data->top_level_key, data, data->top_level);
/* Make a copy of grids before reshaping, so we can calculate deltas
* later on.
*/
multires_reshape_store_original_grids(data);
}
static void multires_reshape_propagate_prepare_from_mmd(
@@ -390,6 +481,7 @@ static void multires_reshape_propagate_prepare_from_mmd(
const int top_level,
const bool use_render_params)
{
/* TODO(sergey): Find mode reliable way of getting current level. */
Scene *scene_eval = DEG_get_evaluated_scene(depsgraph);
Mesh *mesh = object->data;
const int level = multires_get_level(
@@ -397,163 +489,236 @@ static void multires_reshape_propagate_prepare_from_mmd(
multires_reshape_propagate_prepare(data, mesh, level, top_level);
}
static void multires_reshape_propagate_corner_data(
MultiresPropagateCornerData *corner,
const MDisps *old_displacement_grid,
const MDisps *new_displacement_grid,
const GridPaintMask *grid_paint_mask,
const int grid_size,
const int grid_skip,
const int reshape_x, const int reshape_y)
/* Calculate delta of changed reshape level data layers. Delta goes to a
* grids at top level (meaning, the result grids are only partially filled
* in).
*/
static void multires_reshape_calculate_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int x = reshape_x * grid_skip;
const int y = reshape_y * grid_skip;
const int grid_index = y * grid_size + x;
if (old_displacement_grid->disps != NULL) {
copy_v3_v3(corner->old_coord, old_displacement_grid->disps[grid_index]);
}
else {
zero_v3(corner->old_coord);
}
copy_v3_v3(corner->new_coord, new_displacement_grid->disps[grid_index]);
sub_v3_v3v3(corner->coord_delta, corner->new_coord, corner->old_coord);
if (grid_paint_mask != NULL) {
corner->mask = grid_paint_mask->data[grid_index];
}
else {
corner->mask = 0.0f;
}
}
static void multires_reshape_propagate_all_corners_data(
MultiresPropagateCornerData corners[4],
const MDisps *old_displacement_grid,
const MDisps *new_displacement_grid,
const GridPaintMask *grid_paint_mask,
const int grid_size,
const int grid_skip,
const int reshape_x, const int reshape_y)
{
int corner_index = 0;
for (int dy = 0; dy <= 1; dy++) {
for (int dx = 0; dx <= 1; dx++) {
multires_reshape_propagate_corner_data(
&corners[corner_index],
old_displacement_grid,
new_displacement_grid,
grid_paint_mask,
grid_size,
grid_skip,
reshape_x + dx, reshape_y + dy);
corner_index++;
const int num_grids = data->num_grids;
/* At this point those custom data layers has updated data for the
* level we are propagating from.
*/
const MDisps *mdisps = data->mdisps;
const GridPaintMask *grid_paint_mask = data->grid_paint_mask;
CCGKey *reshape_key = &data->reshape_level_key;
CCGKey *delta_level_key = &data->top_level_key;
/* Calculate delta. */
const int top_grid_size = data->top_grid_size;
const int reshape_grid_size = data->reshape_grid_size;
const int delta_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (reshape_grid_size - 1);
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
/*const*/ CCGElem *orig_grid = data->orig_grids_data[grid_index];
CCGElem *delta_grid = delta_grids_data[grid_index];
for (int y = 0; y < reshape_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < reshape_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * delta_grid_size + top_x;
sub_v3_v3v3(
CCG_grid_elem_co(
delta_level_key, delta_grid, top_x, top_y),
mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(reshape_key, orig_grid, x, y));
if (delta_level_key->has_mask) {
const float old_mask_value = *CCG_grid_elem_mask(
reshape_key, orig_grid, x, y);
const float new_mask_value =
grid_paint_mask[grid_index].data[top_index];
*CCG_grid_elem_mask(
delta_level_key, delta_grid, top_x, top_y) =
new_mask_value - old_mask_value;
}
}
}
}
}
static void multires_reshape_propagate_interpolate_coord(
MDisps *new_displacement_grid,
const MultiresPropagateCornerData corners[4],
const float weights[4],
const int x, const int y,
const int grid_size)
{
float delta[3];
interp_v3_v3v3v3v3(
delta,
corners[0].coord_delta, corners[1].coord_delta,
corners[2].coord_delta, corners[3].coord_delta,
weights);
const int index = y * grid_size + x;
float *new_displacement = new_displacement_grid->disps[index];
add_v3_v3(new_displacement, delta);
}
/* Makes it so delta is propagated onto all the higher levels, but is also
* that this delta is smoothed in a way that it does not cause artifacts on
* boundaries.
*/
static void multires_reshape_propagate_interpolate_mask(
GridPaintMask *grid_paint_mask,
const MultiresPropagateCornerData corners[4],
const float weights[4],
const int x, const int y,
const int grid_size)
{
const int index = y * grid_size + x;
grid_paint_mask->data[index] =
corners[0].mask * weights[0] +
corners[1].mask * weights[1] +
corners[2].mask * weights[2] +
corners[3].mask * weights[3];
}
typedef struct MultiresPropagateCornerData {
float coord_delta[3];
float mask_delta;
} MultiresPropagateCornerData;
static void multires_reshape_propagate_grid(
BLI_INLINE void multires_reshape_propagate_init_patch_corners(
MultiresPropagateData *data,
const MDisps *old_displacement_grid,
MDisps *new_displacement_grid,
GridPaintMask *grid_paint_mask)
CCGElem *delta_grid,
const int patch_x, const int patch_y,
MultiresPropagateCornerData r_corners[4])
{
const int reshape_grid_size = data->reshape_grid_size;
CCGKey *delta_level_key = &data->top_level_key;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int grid_skip = (top_grid_size - 1) / (reshape_grid_size - 1);
const float grid_skip_inv = 1.0f / (float)grid_skip;
for (int reshape_y = 0;
reshape_y < reshape_grid_size - 1;
reshape_y++)
{
for (int reshape_x = 0;
reshape_x < reshape_grid_size - 1;
reshape_x++)
{
MultiresPropagateCornerData corners[4];
multires_reshape_propagate_all_corners_data(
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
const int x = patch_x * skip;
const int y = patch_y * skip;
/* Store coordinate deltas. */
copy_v3_v3(r_corners[0].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x, y));
copy_v3_v3(r_corners[1].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x + skip, y));
copy_v3_v3(r_corners[2].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid, x, y + skip));
copy_v3_v3(r_corners[3].coord_delta,
CCG_grid_elem_co(delta_level_key, delta_grid,
x + skip, y + skip));
if (delta_level_key->has_mask) {
r_corners[0].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid, x, y);
r_corners[1].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x + skip, y);
r_corners[2].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x, y + skip);
r_corners[3].mask_delta =
*CCG_grid_elem_mask(delta_level_key, delta_grid,
x + skip, y + skip);
}
}
BLI_INLINE void multires_reshape_propagate_interpolate_coord(
float delta[3],
const MultiresPropagateCornerData corners[4],
const float weights[4])
{
interp_v3_v3v3v3v3(
delta,
corners[0].coord_delta, corners[1].coord_delta,
corners[2].coord_delta, corners[3].coord_delta,
weights);
}
BLI_INLINE float multires_reshape_propagate_interpolate_mask(
const MultiresPropagateCornerData corners[4],
const float weights[4])
{
return corners[0].mask_delta * weights[0] +
corners[1].mask_delta * weights[1] +
corners[2].mask_delta * weights[2] +
corners[3].mask_delta * weights[3];
}
BLI_INLINE void multires_reshape_propagate_and_smooth_delta_grid_patch(
MultiresPropagateData *data,
CCGElem *delta_grid,
const int patch_x, const int patch_y)
{
CCGKey *delta_level_key = &data->top_level_key;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
const float skip_inv = 1.0f / (float)skip;
MultiresPropagateCornerData corners[4];
multires_reshape_propagate_init_patch_corners(
data, delta_grid, patch_x, patch_y, corners);
const int start_x = patch_x * skip;
const int start_y = patch_y * skip;
for (int y = 0; y <= skip; y++) {
const float v = (float)y * skip_inv;
const int final_y = start_y + y;
for (int x = 0; x <= skip; x++) {
const float u = (float)x * skip_inv;
const int final_x = start_x + x;
const float linear_weights[4] = {(1.0f - u) * (1.0f - v),
u * (1.0f - v),
(1.0f - u) * v,
u * v};
multires_reshape_propagate_interpolate_coord(
CCG_grid_elem_co(delta_level_key, delta_grid,
final_x, final_y),
corners,
old_displacement_grid, new_displacement_grid,
grid_paint_mask,
top_grid_size,
grid_skip,
reshape_x, reshape_y);
/* Propagate to higher levels. */
for (int y = 0; y <= grid_skip; y++) {
const float v = (float)y * grid_skip_inv;
for (int x = 0; x <= grid_skip; x++) {
/* Ignorevalues at the exact locations of grid which was
* reshape. Those points already have proper displacement.
*/
if ((x == 0 && y == 0) ||
(x == grid_skip && y == 0) ||
(x == grid_skip && y == grid_skip) ||
(x == 0 && y == grid_skip))
{
continue;
}
/* Ignore right-most column and top-most row, unless this
* is a boundary of the grid, to prevent displacement
* being affected twice.
*/
if (x == grid_skip && reshape_x != reshape_grid_size - 2) {
continue;
}
if (y == grid_skip && reshape_y != reshape_grid_size - 2) {
continue;
}
const float u = (float)x * grid_skip_inv;
const int final_x = reshape_x * grid_skip + x;
const int final_y = reshape_y * grid_skip + y;
const float linear_weights[4] = {(1.0f - u) * (1.0f - v),
u * (1.0f - v),
(1.0f - u) * v,
u * v};
multires_reshape_propagate_interpolate_coord(
new_displacement_grid,
corners,
linear_weights,
final_x, final_y,
top_grid_size);
if (grid_paint_mask != NULL) {
multires_reshape_propagate_interpolate_mask(
grid_paint_mask,
corners,
linear_weights,
final_x, final_y,
top_grid_size);
}
linear_weights);
if (delta_level_key->has_mask) {
float *mask = CCG_grid_elem_mask(delta_level_key, delta_grid,
final_x, final_y);
*mask = multires_reshape_propagate_interpolate_mask(
corners, linear_weights);
}
}
}
}
BLI_INLINE void multires_reshape_propagate_and_smooth_delta_grid(
MultiresPropagateData *data,
CCGElem *delta_grid)
{
const int orig_grid_size = data->reshape_grid_size;
for (int patch_y = 0; patch_y < orig_grid_size - 1; patch_y++) {
for (int patch_x = 0; patch_x < orig_grid_size - 1; patch_x++) {
multires_reshape_propagate_and_smooth_delta_grid_patch(
data, delta_grid, patch_x, patch_y);
}
}
}
/* Entry point to propagate+smooth. */
static void multires_reshape_propagate_and_smooth_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int num_grids = data->num_grids;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *delta_grid = delta_grids_data[grid_index];
multires_reshape_propagate_and_smooth_delta_grid(data, delta_grid);
}
}
/* Apply smoothed deltas on the actual data layers. */
static void multires_reshape_propagate_apply_delta(
MultiresPropagateData *data,
CCGElem **delta_grids_data)
{
const int num_grids = data->num_grids;
/* At this point those custom data layers has updated data for the
* level we are propagating from.
*/
MDisps *mdisps = data->mdisps;
GridPaintMask *grid_paint_mask = data->grid_paint_mask;
CCGKey *orig_key = &data->reshape_level_key;
CCGKey *delta_level_key = &data->top_level_key;
CCGElem **orig_grids_data = data->orig_grids_data;
const int orig_grid_size = data->reshape_grid_size;
const int top_grid_size = data->top_grid_size;
const int skip = (top_grid_size - 1) / (orig_grid_size - 1);
/* Restore grid values at the reshape level. Those values are to be changed
* to the accommodate for the smooth delta.
*/
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *orig_grid = orig_grids_data[grid_index];
for (int y = 0; y < orig_grid_size; y++) {
const int top_y = y * skip;
for (int x = 0; x < orig_grid_size; x++) {
const int top_x = x * skip;
const int top_index = top_y * top_grid_size + top_x;
copy_v3_v3(mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(orig_key, orig_grid, x, y));
if (grid_paint_mask != NULL) {
grid_paint_mask[grid_index].data[top_index] =
*CCG_grid_elem_mask(orig_key, orig_grid, x, y);
}
}
}
}
/* Add smoothed delta to all the levels. */
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
CCGElem *delta_grid = delta_grids_data[grid_index];
for (int y = 0; y < top_grid_size; y++) {
for (int x = 0; x < top_grid_size; x++) {
const int top_index = y * top_grid_size + x;
add_v3_v3(mdisps[grid_index].disps[top_index],
CCG_grid_elem_co(delta_level_key, delta_grid, x, y));
if (delta_level_key->has_mask) {
grid_paint_mask[grid_index].data[top_index] +=
*CCG_grid_elem_mask(
delta_level_key, delta_grid, x, y);
}
}
}
@@ -562,43 +727,25 @@ static void multires_reshape_propagate_grid(
static void multires_reshape_propagate(MultiresPropagateData *data)
{
if (data->old_displacement_grids == NULL) {
if (data->reshape_level == data->top_level) {
return;
}
const int num_grids = data->num_grids;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
const MDisps *old_displacement_grid =
&data->old_displacement_grids[grid_index];
MDisps *new_displacement_grid =
&data->new_displacement_grids[grid_index];
if (old_displacement_grid->level != new_displacement_grid->level) {
continue;
}
GridPaintMask *grid_paint_mask =
data->grid_paint_mask != NULL
? &data->grid_paint_mask[grid_index]
: NULL;
multires_reshape_propagate_grid(
data, old_displacement_grid,
new_displacement_grid,
grid_paint_mask);
}
/* Calculate delta made at the reshape level. */
CCGKey *delta_level_key = &data->top_level_key;
CCGElem **delta_grids_data = allocate_grids(delta_level_key, num_grids);
multires_reshape_calculate_delta(data, delta_grids_data);
/* Propagate deltas to the higher levels. */
multires_reshape_propagate_and_smooth_delta(data, delta_grids_data);
/* Finally, apply smoothed deltas. */
multires_reshape_propagate_apply_delta(data, delta_grids_data);
/* Cleanup. */
free_grids(delta_grids_data, num_grids);
}
static void multires_reshape_propagate_free(MultiresPropagateData *data)
{
if (data->old_displacement_grids == NULL) {
return;
}
const int num_grids = data->num_grids;
MDisps *old_mdisps = data->old_displacement_grids;
for (int grid_index = 0; grid_index < num_grids; grid_index++) {
MDisps *old_displacement_grid = &old_mdisps[grid_index];
if (old_displacement_grid->disps) {
MEM_freeN(old_displacement_grid->disps);
}
}
MEM_freeN(data->old_displacement_grids);
free_grids(data->orig_grids_data, data->num_grids);
}
/* =============================================================================