_new point class and update_

- adds a new point class
  * point/ vector math (p + v = p, p - p = v, etc.)
  * points can be transformed by matrices/quats
  * wraps 'place vector' type vectors that have no magnitude
- wrapped toXXX() methods work correctly
  * toXXX() will NOT wrap data (this is due to the fact that wrapped data cannot be converted)
  * added a 'wrapped' attribute to mathutils classes to determine wether the object is accessing python or blender data
- added the ability to negate vectors/points with "-vec"
  * deprecated vector.negate()
- added the ability to shorhand inverse matrices with "~mat" (tilde)
- conversion between vector/point with toXXX() methods
This commit is contained in:
2005-07-23 13:46:40 +00:00
parent 32255b65df
commit 6a9e7ab3f2
14 changed files with 919 additions and 138 deletions

View File

@@ -42,6 +42,7 @@ char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Vector_methods[] = {
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
@@ -50,9 +51,27 @@ struct PyMethodDef Vector_methods[] = {
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//--------------------------Vector.toPoint()----------------------
//create a new point object to represent this vector
PyObject *Vector_toPoint(VectorObject * self)
{
float coord[3];
int x;
if(self->size < 2 || self->size > 3) {
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
}
for(x = 0; x < self->size; x++){
coord[x] = self->vec[x];
}
return (PyObject *) newPointObject(coord, self->size, Py_NEW);
}
//----------------------------Vector.zero() ----------------------
//set the vector data to 0,0,0
PyObject *Vector_Zero(VectorObject * self)
@@ -79,16 +98,6 @@ PyObject *Vector_Normalize(VectorObject * self)
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Vector.negate() --------------------
//set the vector to it's negative -x, -y, -z
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Vector.resize2D() ------------------
//resize the vector to x,y
PyObject *Vector_Resize2D(VectorObject * self)
@@ -196,7 +205,12 @@ static PyObject *Vector_getattr(VectorObject * self, char *name)
}
return PyFloat_FromDouble(sqrt(dot));
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Vector_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
@@ -368,28 +382,47 @@ static PyObject *Vector_add(PyObject * v1, PyObject * v2)
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
PointObject *pt = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: vectors must have the same dimensions for this operation\n");
if(!vec1->coerced_object){
if(vec2->coerced_object){
if(PointObject_Check(vec2->coerced_object)){ //VECTOR + POINT
//Point translation
pt = (PointObject*)EXPP_incr_ret(vec2->coerced_object);
size = vec1->size;
if(pt->size == size){
for(x = 0; x < size; x++){
vec[x] = vec1->vec[x] + pt->coord[x];
}
}else{
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments are the wrong size....\n");
}
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
return (PyObject *) newPointObject(vec, size, Py_NEW);
}
}else{ //VECTOR + VECTOR
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] + vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] + vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
}
//------------------------obj - obj------------------------------
//subtraction
@@ -426,7 +459,7 @@ static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4], scalar, newVec[3];
float vec[4], scalar;
double dot = 0.0f;
VectorObject *vec1 = NULL, *vec2 = NULL;
PyObject *f = NULL, *retObj = NULL;
@@ -476,39 +509,16 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC
}else if(QuaternionObject_Check(vec2->coerced_object)){ //VECTOR * QUATERNION
quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
if(vec1->size != 3){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
}
newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[0]*vec1->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec1->vec[1] +
quat->quat[1]*quat->quat[1]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[1]*vec1->vec[2] -
quat->quat[3]*quat->quat[3]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[0];
newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] +
quat->quat[2]*quat->quat[2]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[3]*vec1->vec[0] -
quat->quat[3]*quat->quat[3]*vec1->vec[1] +
quat->quat[0]*quat->quat[0]*vec1->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec1->vec[2] -
quat->quat[1]*quat->quat[1]*vec1->vec[1];
newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[3]*vec1->vec[1] +
quat->quat[3]*quat->quat[3]*vec1->vec[2] -
2*quat->quat[0]*quat->quat[2]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[1]*vec1->vec[1] -
quat->quat[1]*quat->quat[1]*vec1->vec[2] +
quat->quat[0]*quat->quat[0]*vec1->vec[2];
retObj = quat_rotation((PyObject*)vec1, (PyObject*)quat);
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
return newVectorObject(newVec,3,Py_NEW);
return retObj;
}
}else{ //VECTOR * VECTOR
if(vec1->size != vec2->size){
@@ -530,35 +540,16 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
//------------------------obj / obj------------------------------
//division
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
//-------------------------- -obj -------------------------------
//returns the negative of this object
static PyObject *Vector_neg(VectorObject *self)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: vectors must have the same dimensions for this operation\n");
int x;
for(x = 0; x < self->size; x++){
self->vec[x] = -self->vec[x];
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] / vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
return EXPP_incr_ret((PyObject *)self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type VectorObject for numeric protocols
@@ -573,7 +564,8 @@ static int Vector_coerce(PyObject ** v1, PyObject ** v2)
PyObject *coerced = NULL;
if(!VectorObject_Check(*v2)) {
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) {
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) ||
QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
coerced = EXPP_incr_ret(*v2);
*v2 = newVectorObject(NULL,3,Py_NEW);
((VectorObject*)*v2)->coerced_object = coerced;
@@ -599,11 +591,11 @@ static PyNumberMethods Vector_NumMethods = {
(binaryfunc) Vector_add, /* __add__ */
(binaryfunc) Vector_sub, /* __sub__ */
(binaryfunc) Vector_mul, /* __mul__ */
(binaryfunc) Vector_div, /* __div__ */
(binaryfunc) 0, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) 0, /* __neg__ */
(unaryfunc) Vector_neg, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
@@ -652,12 +644,15 @@ PyObject *newVectorObject(float *vec, int size, int type)
self = PyObject_NEW(VectorObject, &vector_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(size > 4 || size < 2)
return NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = vec;
self->vec = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->vec = self->data.py_data;
@@ -672,9 +667,25 @@ PyObject *newVectorObject(float *vec, int size, int type)
self->vec[x] = vec[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
//#############################DEPRECATED################################
//#######################################################################
//----------------------------Vector.negate() --------------------
//set the vector to it's negative -x, -y, -z
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
printf("Vector.negate(): Deprecated: use -vector instead\n");
return EXPP_incr_ret((PyObject*)self);
}
//#######################################################################
//#############################DEPRECATED################################