_new point class and update_

- adds a new point class
  * point/ vector math (p + v = p, p - p = v, etc.)
  * points can be transformed by matrices/quats
  * wraps 'place vector' type vectors that have no magnitude
- wrapped toXXX() methods work correctly
  * toXXX() will NOT wrap data (this is due to the fact that wrapped data cannot be converted)
  * added a 'wrapped' attribute to mathutils classes to determine wether the object is accessing python or blender data
- added the ability to negate vectors/points with "-vec"
  * deprecated vector.negate()
- added the ability to shorhand inverse matrices with "~mat" (tilde)
- conversion between vector/point with toXXX() methods
This commit is contained in:
2005-07-23 13:46:40 +00:00
parent 32255b65df
commit 6a9e7ab3f2
14 changed files with 919 additions and 138 deletions

View File

@@ -143,6 +143,35 @@ PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
}
return (PyObject *) newVectorObject(vecNew, vec->size, Py_NEW);
}
//This is a helper for point/matrix translation
PyObject *column_point_multiplication(MatrixObject * mat, PointObject* pt)
{
float ptNew[4], ptCopy[4];
double dot = 0.0f;
int x, y, z = 0;
if(mat->rowSize != pt->size){
if(mat->rowSize == 4 && pt->size != 3){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"matrix * point: matrix row size and point size must be the same\n");
}else{
ptCopy[3] = 0.0f;
}
}
for(x = 0; x < pt->size; x++){
ptCopy[x] = pt->coord[x];
}
for(x = 0; x < mat->rowSize; x++) {
for(y = 0; y < mat->colSize; y++) {
dot += mat->matrix[x][y] * ptCopy[y];
}
ptNew[z++] = (float)dot;
dot = 0.0f;
}
return (PyObject *) newPointObject(ptNew, pt->size, Py_NEW);
}
//-----------------row_vector_multiplication (internal)-----------
//ROW VECTOR Multiplication - Vector X Matrix
//[x][y][z] * [1][2][3]
@@ -178,6 +207,122 @@ PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
}
return (PyObject *) newVectorObject(vecNew, size, Py_NEW);
}
//This is a helper for the point class
PyObject *row_point_multiplication(PointObject* pt, MatrixObject * mat)
{
float ptNew[4], ptCopy[4];
double dot = 0.0f;
int x, y, z = 0, size;
if(mat->colSize != pt->size){
if(mat->rowSize == 4 && pt->size != 3){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"point * matrix: matrix column size and the point size must be the same\n");
}else{
ptCopy[3] = 0.0f;
}
}
size = pt->size;
for(x = 0; x < pt->size; x++){
ptCopy[x] = pt->coord[x];
}
//muliplication
for(x = 0; x < mat->colSize; x++) {
for(y = 0; y < mat->rowSize; y++) {
dot += mat->matrix[y][x] * ptCopy[y];
}
ptNew[z++] = (float)dot;
dot = 0.0f;
}
return (PyObject *) newPointObject(ptNew, size, Py_NEW);
}
//-----------------quat_rotation (internal)-----------
//This function multiplies a vector/point * quat or vice versa
//to rotate the point/vector by the quaternion
//arguments should all be 3D
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
{
float rot[3];
QuaternionObject *quat = NULL;
VectorObject *vec = NULL;
PointObject *pt = NULL;
if(QuaternionObject_Check(arg1)){
quat = (QuaternionObject*)arg1;
if(VectorObject_Check(arg2)){
vec = (VectorObject*)arg2;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return (PyObject *) newVectorObject(rot, 3, Py_NEW);
}else if(PointObject_Check(arg2)){
pt = (PointObject*)arg2;
rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] -
2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] +
2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] -
quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] +
2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] -
quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] -
2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] +
quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] -
quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] -
quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
return (PyObject *) newPointObject(rot, 3, Py_NEW);
}
}else if(VectorObject_Check(arg1)){
vec = (VectorObject*)arg1;
if(QuaternionObject_Check(arg2)){
quat = (QuaternionObject*)arg2;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return (PyObject *) newVectorObject(rot, 3, Py_NEW);
}
}else if(PointObject_Check(arg1)){
pt = (PointObject*)arg1;
if(QuaternionObject_Check(arg2)){
quat = (QuaternionObject*)arg2;
rot[0] = quat->quat[0]*quat->quat[0]*pt->coord[0] + 2*quat->quat[2]*quat->quat[0]*pt->coord[2] -
2*quat->quat[3]*quat->quat[0]*pt->coord[1] + quat->quat[1]*quat->quat[1]*pt->coord[0] +
2*quat->quat[2]*quat->quat[1]*pt->coord[1] + 2*quat->quat[3]*quat->quat[1]*pt->coord[2] -
quat->quat[3]*quat->quat[3]*pt->coord[0] - quat->quat[2]*quat->quat[2]*pt->coord[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*pt->coord[0] + quat->quat[2]*quat->quat[2]*pt->coord[1] +
2*quat->quat[3]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[3]*pt->coord[0] -
quat->quat[3]*quat->quat[3]*pt->coord[1] + quat->quat[0]*quat->quat[0]*pt->coord[1] -
2*quat->quat[1]*quat->quat[0]*pt->coord[2] - quat->quat[1]*quat->quat[1]*pt->coord[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*pt->coord[0] + 2*quat->quat[2]*quat->quat[3]*pt->coord[1] +
quat->quat[3]*quat->quat[3]*pt->coord[2] - 2*quat->quat[0]*quat->quat[2]*pt->coord[0] -
quat->quat[2]*quat->quat[2]*pt->coord[2] + 2*quat->quat[0]*quat->quat[1]*pt->coord[1] -
quat->quat[1]*quat->quat[1]*pt->coord[2] + quat->quat[0]*quat->quat[0]*pt->coord[2];
return (PyObject *) newPointObject(rot, 3, Py_NEW);
}
}
return (EXPP_ReturnPyObjError(PyExc_RuntimeError,
"quat_rotation(internal): internal problem rotating vector/point\n"));
}
//----------------------------------Mathutils.Rand() --------------------
//returns a random number between a high and low value
PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)

View File

@@ -39,11 +39,15 @@
#include "matrix.h"
#include "quat.h"
#include "euler.h"
#include "point.h"
#include "Types.h"
PyObject *Mathutils_Init( void );
PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat);
PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec);
PyObject *row_point_multiplication(PointObject* pt, MatrixObject * mat);
PyObject *column_point_multiplication(MatrixObject * mat, PointObject* pt);
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2);
PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args);

View File

@@ -85,6 +85,7 @@ void types_InitAll( void )
rgbTuple_Type.ob_type = &PyType_Type;
vector_Type.ob_type = &PyType_Type;
property_Type.ob_type = &PyType_Type;
point_Type.ob_type = &PyType_Type;
}
/*****************************************************************************/
@@ -169,6 +170,8 @@ PyObject *Types_Init( void )
( PyObject * ) &Action_Type );
PyDict_SetItemString( dict, "propertyType",
( PyObject * ) &property_Type );
PyDict_SetItemString( dict, "pointType",
( PyObject * ) &point_Type );
return submodule;
}

View File

@@ -53,6 +53,7 @@ extern PyTypeObject Wave_Type, World_Type;
extern PyTypeObject property_Type;
extern PyTypeObject buffer_Type, constant_Type, euler_Type;
extern PyTypeObject matrix_Type, quaternion_Type, rgbTuple_Type, vector_Type;
extern PyTypeObject point_Type;
PyObject *Types_Init( void );
void types_InitAll( void );

View File

@@ -65,9 +65,6 @@ PyObject *Euler_ToQuat(EulerObject * self)
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToQuat(eul, quat);
if(self->data.blend_data)
return (PyObject *) newQuaternionObject(quat, Py_WRAP);
else
return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
//----------------------------Euler.toMatrix()---------------------
@@ -82,9 +79,6 @@ PyObject *Euler_ToMatrix(EulerObject * self)
eul[x] = self->eul[x] * ((float)Py_PI / 180);
}
EulToMat3(eul, (float (*)[3]) mat);
if(self->data.blend_data)
return (PyObject *) newMatrixObject(mat, 3, 3 , Py_WRAP);
else
return (PyObject *) newMatrixObject(mat, 3, 3 , Py_NEW);
}
//----------------------------Euler.unique()-----------------------
@@ -199,7 +193,12 @@ static PyObject *Euler_getattr(EulerObject * self, char *name)
}else if(STREQ(name, "z")){
return PyFloat_FromDouble(self->eul[2]);
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Euler_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ------------------
@@ -394,6 +393,7 @@ PyObject *newEulerObject(float *eul, int type)
if(type == Py_WRAP){
self->data.blend_data = eul;
self->eul = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(3 * sizeof(float));
self->eul = self->data.py_data;
@@ -406,6 +406,7 @@ PyObject *newEulerObject(float *eul, int type)
self->eul[x] = eul[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}

View File

@@ -45,6 +45,7 @@ typedef struct {
float *blend_data; //blender managed
}data;
float *eul; //1D array of data (alias)
int wrapped; //is wrapped data?
} EulerObject;
/*struct data contains a pointer to the actual data that the

View File

@@ -77,9 +77,6 @@ PyObject *Matrix_toQuat(MatrixObject * self)
Mat4ToQuat((float (*)[4])*self->matrix, quat);
}
if(self->data.blend_data)
return (PyObject *) newQuaternionObject(quat, Py_WRAP);
else
return (PyObject *) newQuaternionObject(quat, Py_NEW);
}
//---------------------------Matrix.toEuler() --------------------
@@ -98,9 +95,6 @@ PyObject *Matrix_toEuler(MatrixObject * self)
for(x = 0; x < 3; x++) {
eul[x] *= (float) (180 / Py_PI);
}
if(self->data.blend_data)
return (PyObject *) newEulerObject(eul, Py_WRAP);
else
return (PyObject *) newEulerObject(eul, Py_NEW);
}
//---------------------------Matrix.resize4x4() ------------------
@@ -339,7 +333,12 @@ static PyObject *Matrix_getattr(MatrixObject * self, char *name)
} else if(STREQ(name, "colSize")) {
return PyInt_FromLong((long) self->colSize);
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
@@ -601,6 +600,7 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
MatrixObject *mat1 = NULL, *mat2 = NULL;
PyObject *f = NULL, *retObj = NULL;
VectorObject *vec = NULL;
PointObject *pt = NULL;
EXPP_incr2(m1, m2);
mat1 = (MatrixObject*)m1;
@@ -631,6 +631,11 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
retObj = column_vector_multiplication(mat1, vec);
EXPP_decr3((PyObject*)mat1, (PyObject*)mat2, (PyObject*)vec);
return retObj;
}else if(PointObject_Check(mat2->coerced_object)){ //MATRIX * POINT
pt = (PointObject*)EXPP_incr_ret(mat2->coerced_object);
retObj = column_point_multiplication(mat1, pt);
EXPP_decr3((PyObject*)mat1, (PyObject*)mat2, (PyObject*)pt);
return retObj;
}else if (PyFloat_Check(mat2->coerced_object) ||
PyInt_Check(mat2->coerced_object)){ // MATRIX * FLOAT/INT
f = PyNumber_Float(mat2->coerced_object);
@@ -671,6 +676,10 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Matrix multiplication: arguments not acceptable for this operation\n");
}
PyObject* Matrix_inv(MatrixObject *self)
{
return Matrix_Invert(self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type MatrixObject for numeric protocols
/*Coercion() is called whenever a math operation has 2 operands that
@@ -683,7 +692,8 @@ static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
{
PyObject *coerced = NULL;
if(!MatrixObject_Check(*m2)) {
if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2)) {
if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) ||
PointObject_Check(*m2)) {
coerced = EXPP_incr_ret(*m2);
*m2 = newMatrixObject(NULL,3,3,Py_NEW);
((MatrixObject*)*m2)->coerced_object = coerced;
@@ -718,7 +728,7 @@ static PyNumberMethods Matrix_NumMethods = {
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(unaryfunc) Matrix_inv, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
@@ -794,6 +804,7 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
}
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
if(self->data.py_data == NULL) { //allocation failure
@@ -822,6 +833,7 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
} else { //or if no arguments are passed return identity matrix
Matrix_Identity(self);
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}

View File

@@ -48,6 +48,7 @@ typedef struct _Matrix {
float *contigPtr; //1D array of data (alias)
int rowSize;
int colSize;
int wrapped; //is wrapped data?
PyObject *coerced_object;
} MatrixObject;
/*coerced_object is a pointer to the object that it was

View File

@@ -0,0 +1,543 @@
/*
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_blenlib.h"
#include "BKE_utildefines.h"
#include "gen_utils.h"
//-------------------------DOC STRINGS ---------------------------
char Point_Zero_doc[] = "() - set all values in the point to 0";
char Point_toVector_doc[] = "() - create a vector representation of this point";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Point_methods[] = {
{"zero", (PyCFunction) Point_Zero, METH_NOARGS, Point_Zero_doc},
{"toVector", (PyCFunction) Point_toVector, METH_NOARGS, Point_toVector_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//--------------------------Vector.toPoint()----------------------
//create a new point object to represent this vector
PyObject *Point_toVector(PointObject * self)
{
float vec[3];
int x;
for(x = 0; x < self->size; x++){
vec[x] = self->coord[x];
}
return (PyObject *) newVectorObject(vec, self->size, Py_NEW);
}
//----------------------------Point.zero() ----------------------
//set the point data to 0,0,0
PyObject *Point_Zero(PointObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->coord[x] = 0.0f;
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------dealloc()(internal) ----------------
//free the py_object
static void Point_dealloc(PointObject * self)
{
//only free py_data
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
//----------------------------getattr()(internal) ----------------
//object.attribute access (get)
static PyObject *Point_getattr(PointObject * self, char *name)
{
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->coord[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->coord[1]);
}else if(STREQ(name, "z")){
if(self->size > 2){
return PyFloat_FromDouble(self->coord[2]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"point.z: illegal attribute access\n");
}
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Point_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
//object.attribute access (set)
static int Point_setattr(PointObject * self, char *name, PyObject * v)
{
PyObject *f = NULL;
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"point.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->coord[0] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->coord[1] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
if(self->size > 2){
self->coord[2] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"point.z = x: illegal attribute access\n");
}
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"point.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
//----------------------------print object (internal)-------------
//print the object to screen
static PyObject *Point_repr(PointObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < self->size; i++){
if(i < (self->size - 1)){
sprintf(buffer, "%.6f, ", self->coord[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->coord[i]);
strcat(str,buffer);
}
}
strcat(str, "](point)");
return EXPP_incr_ret(PyString_FromString(str));
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Point_len(PointObject * self)
{
return self->size;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Point_item(PointObject * self, int i)
{
if(i < 0 || i >= self->size)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"point[attribute]: array index out of range\n");
return Py_BuildValue("f", self->coord[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Point_ass_item(PointObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"point[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= self->size){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"point[attribute] = x: array assignment index out of range\n");
}
self->coord[i] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Point_slice(PointObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->coord[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Point_ass_slice(PointObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float coord[3];
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"point[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
PyObject *v, *f;
v = PySequence_GetItem(seq, i);
if (v == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"point[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
Py_DECREF(v);
return EXPP_ReturnIntError(PyExc_TypeError,
"point[begin:end] = []: sequence argument not a number\n");
}
coord[i] = (float)PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,v);
}
//parsed well - now set in point
for(y = 0; y < size; y++){
self->coord[begin + y] = coord[y];
}
return 0;
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Point_add(PyObject * v1, PyObject * v2)
{
int x, size;
float coord[3];
PointObject *coord1 = NULL, *coord2 = NULL;
VectorObject *vec = NULL;
EXPP_incr2(v1, v2);
coord1 = (PointObject*)v1;
coord2 = (PointObject*)v2;
if(!coord1->coerced_object){
if(coord2->coerced_object){
if(VectorObject_Check(coord2->coerced_object)){ //POINT + VECTOR
//Point translation
vec = (VectorObject*)EXPP_incr_ret(coord2->coerced_object);
size = coord1->size;
if(vec->size == size){
for(x = 0; x < size; x++){
coord[x] = coord1->coord[x] + vec->vec[x];
}
}else{
EXPP_decr3((PyObject*)coord1, (PyObject*)coord2, (PyObject*)vec);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments are the wrong size....\n");
}
EXPP_decr3((PyObject*)coord1, (PyObject*)coord2, (PyObject*)vec);
return (PyObject *) newPointObject(coord, size, Py_NEW);
}
}else{ //POINT + POINT
size = coord1->size;
if(coord2->size == size){
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] + coord2->coord[x];
}
}else{
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments are the wrong size....\n");
}
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return (PyObject *) newPointObject(coord, size, Py_NEW);
}
}
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments not valid for this operation....\n");
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Point_sub(PyObject * v1, PyObject * v2)
{
int x, size;
float coord[3];
PointObject *coord1 = NULL, *coord2 = NULL;
EXPP_incr2(v1, v2);
coord1 = (PointObject*)v1;
coord2 = (PointObject*)v2;
if(coord1->coerced_object || coord2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point subtraction: arguments not valid for this operation....\n");
}
if(coord1->size != coord2->size){
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point subtraction: points must have the same dimensions for this operation\n");
}
size = coord1->size;
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] - coord2->coord[x];
}
//Point - Point = Vector
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return (PyObject *) newVectorObject(coord, size, Py_NEW);
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Point_mul(PyObject * p1, PyObject * p2)
{
int x, size;
float coord[3], scalar;
PointObject *coord1 = NULL, *coord2 = NULL;
PyObject *f = NULL, *retObj = NULL;
MatrixObject *mat = NULL;
QuaternionObject *quat = NULL;
EXPP_incr2(p1, p2);
coord1 = (PointObject*)p1;
coord2 = (PointObject*)p2;
if(coord1->coerced_object){
if (PyFloat_Check(coord1->coerced_object) ||
PyInt_Check(coord1->coerced_object)){ // FLOAT/INT * POINT
f = PyNumber_Float(coord1->coerced_object);
if(f == NULL) { // parsed item not a number
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = coord2->size;
for(x = 0; x < size; x++) {
coord[x] = coord2->coord[x] * scalar;
}
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return (PyObject *) newPointObject(coord, size, Py_NEW);
}
}else{
if(coord2->coerced_object){
if (PyFloat_Check(coord2->coerced_object) ||
PyInt_Check(coord2->coerced_object)){ // POINT * FLOAT/INT
f = PyNumber_Float(coord2->coerced_object);
if(f == NULL) { // parsed item not a number
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = coord1->size;
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] * scalar;
}
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return (PyObject *) newPointObject(coord, size, Py_NEW);
}else if(MatrixObject_Check(coord2->coerced_object)){ //POINT * MATRIX
mat = (MatrixObject*)EXPP_incr_ret(coord2->coerced_object);
retObj = row_point_multiplication(coord1, mat);
EXPP_decr3((PyObject*)coord1, (PyObject*)coord2, (PyObject*)mat);
return retObj;
}else if(QuaternionObject_Check(coord2->coerced_object)){ //POINT * QUATERNION
quat = (QuaternionObject*)EXPP_incr_ret(coord2->coerced_object);
if(coord1->size != 3){
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: only 3D point rotations (with quats) currently supported\n");
}
retObj = quat_rotation((PyObject*)coord1, (PyObject*)quat);
EXPP_decr3((PyObject*)coord1, (PyObject*)coord2, (PyObject*)quat);
return retObj;
}
}
}
EXPP_decr2((PyObject*)coord1, (PyObject*)coord2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
//-------------------------- -obj -------------------------------
//returns the negative of this object
static PyObject *Point_neg(PointObject *self)
{
int x;
for(x = 0; x < self->size; x++){
self->coord[x] = -self->coord[x];
}
return EXPP_incr_ret((PyObject *)self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type PointObject for numeric protocols
/*Coercion() is called whenever a math operation has 2 operands that
it doesn't understand how to evaluate. 2+Matrix for example. We want to
evaluate some of these operations like: (vector * 2), however, for math
to proceed, the unknown operand must be cast to a type that python math will
understand. (e.g. in the case above case, 2 must be cast to a vector and
then call vector.multiply(vector, scalar_cast_as_vector)*/
static int Point_coerce(PyObject ** p1, PyObject ** p2)
{
PyObject *coerced = NULL;
if(!PointObject_Check(*p2)) {
if(VectorObject_Check(*p2) || PyFloat_Check(*p2) || PyInt_Check(*p2) ||
MatrixObject_Check(*p2) || QuaternionObject_Check(*p2)) {
coerced = EXPP_incr_ret(*p2);
*p2 = newPointObject(NULL,3,Py_NEW);
((PointObject*)*p2)->coerced_object = coerced;
}else{
return EXPP_ReturnIntError(PyExc_TypeError,
"point.coerce(): unknown operand - can't coerce for numeric protocols\n");
}
}
EXPP_incr2(*p1, *p2);
return 0;
}
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Point_SeqMethods = {
(inquiry) Point_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Point_item, /* sq_item */
(intintargfunc) Point_slice, /* sq_slice */
(intobjargproc) Point_ass_item, /* sq_ass_item */
(intintobjargproc) Point_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Point_NumMethods = {
(binaryfunc) Point_add, /* __add__ */
(binaryfunc) Point_sub, /* __sub__ */
(binaryfunc) Point_mul, /* __mul__ */
(binaryfunc) 0, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) Point_neg, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Point_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject point_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size */
"point", /*tp_name */
sizeof(PointObject), /*tp_basicsize */
0, /*tp_itemsize */
(destructor) Point_dealloc, /*tp_dealloc */
(printfunc) 0, /*tp_print */
(getattrfunc) Point_getattr, /*tp_getattr */
(setattrfunc) Point_setattr, /*tp_setattr */
0, /*tp_compare */
(reprfunc) Point_repr, /*tp_repr */
&Point_NumMethods, /*tp_as_number */
&Point_SeqMethods, /*tp_as_sequence */
};
//------------------------newPointObject (internal)-------------
//creates a new point object
/*pass Py_WRAP - if point is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if point is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newPointObject(float *coord, int size, int type)
{
PointObject *self;
int x;
point_Type.ob_type = &PyType_Type;
self = PyObject_NEW(PointObject, &point_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(size > 3 || size < 2)
return NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = coord;
self->coord = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->coord = self->data.py_data;
if(!coord) { //new empty
for(x = 0; x < size; x++){
self->coord[x] = 0.0f;
}
}else{
for(x = 0; x < size; x++){
self->coord[x] = coord[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) EXPP_incr_ret((PyObject *)self);
}

View File

@@ -0,0 +1,65 @@
/*
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifndef EXPP_point_h
#define EXPP_point_h
#include <Python.h>
#define PointObject_Check(v) ((v)->ob_type == &point_Type)
typedef struct {
PyObject_VAR_HEAD
struct{
float *py_data; //python managed
float *blend_data; //blender managed
}data;
float *coord; //1D array of data (alias)
int size;
int wrapped; //is wrapped data?
PyObject *coerced_object;
} PointObject;
/*coerced_object is a pointer to the object that it was
coerced from when a dummy vector needs to be created from
the coerce() function for numeric protocol operations*/
/*struct data contains a pointer to the actual data that the
object uses. It can use either PyMem allocated data (which will
be stored in py_data) or be a wrapper for data allocated through
blender (stored in blend_data). This is an either/or struct not both*/
//prototypes
PyObject *Point_Zero( PointObject * self );
PyObject *Point_toVector(PointObject * self);
PyObject *newPointObject(float *coord, int size, int type);
#endif /* EXPP_point_h */

View File

@@ -68,9 +68,6 @@ PyObject *Quaternion_ToEuler(QuaternionObject * self)
for(x = 0; x < 3; x++) {
eul[x] *= (180 / (float)Py_PI);
}
if(self->data.blend_data)
return newEulerObject(eul, Py_WRAP);
else
return newEulerObject(eul, Py_NEW);
}
//----------------------------Quaternion.toMatrix()------------------
@@ -80,9 +77,6 @@ PyObject *Quaternion_ToMatrix(QuaternionObject * self)
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
QuatToMat3(self->quat, (float (*)[3]) mat);
if(self->data.blend_data)
return newMatrixObject(mat, 3, 3, Py_WRAP);
else
return newMatrixObject(mat, 3, 3, Py_NEW);
}
//----------------------------Quaternion.normalize()----------------
@@ -193,6 +187,12 @@ static PyObject *Quaternion_getattr(QuaternionObject * self, char *name)
Normalise(vec);
return (PyObject *) newVectorObject(vec, 3, Py_NEW);
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Quaternion_methods, (PyObject *) self, name);
}
@@ -397,11 +397,12 @@ static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
{
int x;
float quat[4], scalar, newVec[3];
float quat[4], scalar;
double dot = 0.0f;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
PyObject *f = NULL;
PyObject *f = NULL, *retObj = NULL;
VectorObject *vec = NULL;
PointObject *pt = NULL;
EXPP_incr2(q1, q2);
quat1 = (QuaternionObject*)q1;
@@ -446,32 +447,19 @@ static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Quaternion multiplication: only 3D vector rotations currently supported\n");
}
newVec[0] = quat1->quat[0]*quat1->quat[0]*vec->vec[0] +
2*quat1->quat[2]*quat1->quat[0]*vec->vec[2] -
2*quat1->quat[3]*quat1->quat[0]*vec->vec[1] +
quat1->quat[1]*quat1->quat[1]*vec->vec[0] +
2*quat1->quat[2]*quat1->quat[1]*vec->vec[1] +
2*quat1->quat[3]*quat1->quat[1]*vec->vec[2] -
quat1->quat[3]*quat1->quat[3]*vec->vec[0] -
quat1->quat[2]*quat1->quat[2]*vec->vec[0];
newVec[1] = 2*quat1->quat[1]*quat1->quat[2]*vec->vec[0] +
quat1->quat[2]*quat1->quat[2]*vec->vec[1] +
2*quat1->quat[3]*quat1->quat[2]*vec->vec[2] +
2*quat1->quat[0]*quat1->quat[3]*vec->vec[0] -
quat1->quat[3]*quat1->quat[3]*vec->vec[1] +
quat1->quat[0]*quat1->quat[0]*vec->vec[1] -
2*quat1->quat[1]*quat1->quat[0]*vec->vec[2] -
quat1->quat[1]*quat1->quat[1]*vec->vec[1];
newVec[2] = 2*quat1->quat[1]*quat1->quat[3]*vec->vec[0] +
2*quat1->quat[2]*quat1->quat[3]*vec->vec[1] +
quat1->quat[3]*quat1->quat[3]*vec->vec[2] -
2*quat1->quat[0]*quat1->quat[2]*vec->vec[0] -
quat1->quat[2]*quat1->quat[2]*vec->vec[2] +
2*quat1->quat[0]*quat1->quat[1]*vec->vec[1] -
quat1->quat[1]*quat1->quat[1]*vec->vec[2] +
quat1->quat[0]*quat1->quat[0]*vec->vec[2];
retObj = quat_rotation((PyObject*)quat1, (PyObject*)vec);
EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)vec);
return newVectorObject(newVec,3,Py_NEW);
return retObj;
}else if(PointObject_Check(quat2->coerced_object)){ //QUAT * POINT
pt = (PointObject*)EXPP_incr_ret(quat2->coerced_object);
if(pt->size != 3){
EXPP_decr2((PyObject*)quat1, (PyObject*)quat2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Quaternion multiplication: only 3D point rotations currently supported\n");
}
retObj = quat_rotation((PyObject*)quat1, (PyObject*)pt);
EXPP_decr3((PyObject*)quat1, (PyObject*)quat2, (PyObject*)pt);
return retObj;
}
}else{ //QUAT * QUAT (dot product)
for(x = 0; x < 4; x++) {
@@ -499,7 +487,8 @@ static int Quaternion_coerce(PyObject ** q1, PyObject ** q2)
PyObject *coerced = NULL;
if(!QuaternionObject_Check(*q2)) {
if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2)) {
if(VectorObject_Check(*q2) || PyFloat_Check(*q2) || PyInt_Check(*q2) ||
PointObject_Check(*q2)) {
coerced = EXPP_incr_ret(*q2);
*q2 = newQuaternionObject(NULL,Py_NEW);
((QuaternionObject*)*q2)->coerced_object = coerced;
@@ -583,6 +572,7 @@ PyObject *newQuaternionObject(float *quat, int type)
if(type == Py_WRAP){
self->data.blend_data = quat;
self->quat = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(4 * sizeof(float));
self->quat = self->data.py_data;
@@ -593,6 +583,7 @@ PyObject *newQuaternionObject(float *quat, int type)
self->quat[x] = quat[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}

View File

@@ -45,6 +45,7 @@ typedef struct {
float *blend_data; //blender managed
}data;
float *quat; //1D array of data (alias)
int wrapped; //is wrapped data?
PyObject *coerced_object;
} QuaternionObject;
/*coerced_object is a pointer to the object that it was

View File

@@ -42,6 +42,7 @@ char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Vector_methods[] = {
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
@@ -50,9 +51,27 @@ struct PyMethodDef Vector_methods[] = {
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//--------------------------Vector.toPoint()----------------------
//create a new point object to represent this vector
PyObject *Vector_toPoint(VectorObject * self)
{
float coord[3];
int x;
if(self->size < 2 || self->size > 3) {
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
}
for(x = 0; x < self->size; x++){
coord[x] = self->vec[x];
}
return (PyObject *) newPointObject(coord, self->size, Py_NEW);
}
//----------------------------Vector.zero() ----------------------
//set the vector data to 0,0,0
PyObject *Vector_Zero(VectorObject * self)
@@ -79,16 +98,6 @@ PyObject *Vector_Normalize(VectorObject * self)
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Vector.negate() --------------------
//set the vector to it's negative -x, -y, -z
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------Vector.resize2D() ------------------
//resize the vector to x,y
PyObject *Vector_Resize2D(VectorObject * self)
@@ -196,7 +205,12 @@ static PyObject *Vector_getattr(VectorObject * self, char *name)
}
return PyFloat_FromDouble(sqrt(dot));
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Vector_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
@@ -368,29 +382,48 @@ static PyObject *Vector_add(PyObject * v1, PyObject * v2)
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
PointObject *pt = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
if(!vec1->coerced_object){
if(vec2->coerced_object){
if(PointObject_Check(vec2->coerced_object)){ //VECTOR + POINT
//Point translation
pt = (PointObject*)EXPP_incr_ret(vec2->coerced_object);
size = vec1->size;
if(pt->size == size){
for(x = 0; x < size; x++){
vec[x] = vec1->vec[x] + pt->coord[x];
}
}else{
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments are the wrong size....\n");
}
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
return (PyObject *) newPointObject(vec, size, Py_NEW);
}
}else{ //VECTOR + VECTOR
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: vectors must have the same dimensions for this operation\n");
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] + vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}
}
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector addition: arguments not valid for this operation....\n");
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
@@ -426,7 +459,7 @@ static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
{
int x, size;
float vec[4], scalar, newVec[3];
float vec[4], scalar;
double dot = 0.0f;
VectorObject *vec1 = NULL, *vec2 = NULL;
PyObject *f = NULL, *retObj = NULL;
@@ -476,39 +509,16 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
}else if(QuaternionObject_Check(vec2->coerced_object)){ //QUAT * VEC
}else if(QuaternionObject_Check(vec2->coerced_object)){ //VECTOR * QUATERNION
quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
if(vec1->size != 3){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
}
newVec[0] = quat->quat[0]*quat->quat[0]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[0]*vec1->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec1->vec[1] +
quat->quat[1]*quat->quat[1]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[1]*vec1->vec[2] -
quat->quat[3]*quat->quat[3]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[0];
newVec[1] = 2*quat->quat[1]*quat->quat[2]*vec1->vec[0] +
quat->quat[2]*quat->quat[2]*vec1->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[3]*vec1->vec[0] -
quat->quat[3]*quat->quat[3]*vec1->vec[1] +
quat->quat[0]*quat->quat[0]*vec1->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec1->vec[2] -
quat->quat[1]*quat->quat[1]*vec1->vec[1];
newVec[2] = 2*quat->quat[1]*quat->quat[3]*vec1->vec[0] +
2*quat->quat[2]*quat->quat[3]*vec1->vec[1] +
quat->quat[3]*quat->quat[3]*vec1->vec[2] -
2*quat->quat[0]*quat->quat[2]*vec1->vec[0] -
quat->quat[2]*quat->quat[2]*vec1->vec[2] +
2*quat->quat[0]*quat->quat[1]*vec1->vec[1] -
quat->quat[1]*quat->quat[1]*vec1->vec[2] +
quat->quat[0]*quat->quat[0]*vec1->vec[2];
retObj = quat_rotation((PyObject*)vec1, (PyObject*)quat);
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
return newVectorObject(newVec,3,Py_NEW);
return retObj;
}
}else{ //VECTOR * VECTOR
if(vec1->size != vec2->size){
@@ -530,35 +540,16 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Vector multiplication: arguments not acceptable for this operation\n");
}
//------------------------obj / obj------------------------------
//division
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
//-------------------------- -obj -------------------------------
//returns the negative of this object
static PyObject *Vector_neg(VectorObject *self)
{
int x, size;
float vec[4];
VectorObject *vec1 = NULL, *vec2 = NULL;
EXPP_incr2(v1, v2);
vec1 = (VectorObject*)v1;
vec2 = (VectorObject*)v2;
if(vec1->coerced_object || vec2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: arguments not valid for this operation....\n");
}
if(vec1->size != vec2->size){
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Vector division: vectors must have the same dimensions for this operation\n");
int x;
for(x = 0; x < self->size; x++){
self->vec[x] = -self->vec[x];
}
size = vec1->size;
for(x = 0; x < size; x++) {
vec[x] = vec1->vec[x] / vec2->vec[x];
}
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
return (PyObject *) newVectorObject(vec, size, Py_NEW);
return EXPP_incr_ret((PyObject *)self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type VectorObject for numeric protocols
@@ -573,7 +564,8 @@ static int Vector_coerce(PyObject ** v1, PyObject ** v2)
PyObject *coerced = NULL;
if(!VectorObject_Check(*v2)) {
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || QuaternionObject_Check(*v2)) {
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) ||
QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
coerced = EXPP_incr_ret(*v2);
*v2 = newVectorObject(NULL,3,Py_NEW);
((VectorObject*)*v2)->coerced_object = coerced;
@@ -599,11 +591,11 @@ static PyNumberMethods Vector_NumMethods = {
(binaryfunc) Vector_add, /* __add__ */
(binaryfunc) Vector_sub, /* __sub__ */
(binaryfunc) Vector_mul, /* __mul__ */
(binaryfunc) Vector_div, /* __div__ */
(binaryfunc) 0, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) 0, /* __neg__ */
(unaryfunc) Vector_neg, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
@@ -652,12 +644,15 @@ PyObject *newVectorObject(float *vec, int size, int type)
self = PyObject_NEW(VectorObject, &vector_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(size > 4 || size < 2)
return NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = vec;
self->vec = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->vec = self->data.py_data;
@@ -672,9 +667,25 @@ PyObject *newVectorObject(float *vec, int size, int type)
self->vec[x] = vec[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
//#############################DEPRECATED################################
//#######################################################################
//----------------------------Vector.negate() --------------------
//set the vector to it's negative -x, -y, -z
PyObject *Vector_Negate(VectorObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->vec[x] = -(self->vec[x]);
}
printf("Vector.negate(): Deprecated: use -vector instead\n");
return EXPP_incr_ret((PyObject*)self);
}
//#######################################################################
//#############################DEPRECATED################################

View File

@@ -45,6 +45,7 @@ typedef struct {
}data;
float *vec; //1D array of data (alias)
int size;
int wrapped; //is wrapped data?
PyObject *coerced_object;
} VectorObject;
/*coerced_object is a pointer to the object that it was
@@ -63,6 +64,7 @@ PyObject *Vector_Negate( VectorObject * self );
PyObject *Vector_Resize2D( VectorObject * self );
PyObject *Vector_Resize3D( VectorObject * self );
PyObject *Vector_Resize4D( VectorObject * self );
PyObject *Vector_toPoint( VectorObject * self );
PyObject *newVectorObject(float *vec, int size, int type);
#endif /* EXPP_vector_h */