utility function to get the points inside a list of planes.

This commit is contained in:
2012-06-27 09:51:22 +00:00
parent 9beef7442c
commit 78ae6ac2a5

View File

@@ -944,6 +944,109 @@ static PyObject *M_Geometry_barycentric_transform(PyObject *UNUSED(self), PyObje
return Vector_CreatePyObject(vec, 3, Py_NEW, NULL);
}
PyDoc_STRVAR(M_Geometry_points_in_planes_doc,
".. function:: points_in_planes(planes)\n"
"\n"
" Returns a list of points inside all planes given and a list of index values for the planes used.\n"
"\n"
" :arg planes: List of planes (4D vectors).\n"
" :type planes: list of :class:`mathutils.Vector`\n"
" :return: two lists, once containing the vertices inside the planes, another containing the plane indicies used\n"
" :rtype: pair of lists\n"
);
/* note: this function could be optimized by some spatial structure */
static PyObject *M_Geometry_points_in_planes(PyObject *UNUSED(self), PyObject *args)
{
PyObject *py_planes;
float (*planes)[4];
unsigned int planes_len;
if (!PyArg_ParseTuple(args, "O:points_in_planes",
&py_planes))
{
return NULL;
}
if ((planes_len = mathutils_array_parse_alloc_v((float **)&planes, 4, py_planes, "points_in_planes")) == -1) {
return NULL;
}
else {
/* note, this could be refactored into plain C easy - py bits are noted */
const float eps = 0.0001f;
const unsigned int len = (unsigned int)planes_len;
unsigned int i, j, k, l;
float n1n2[3], n2n3[3], n3n1[3];
float potentialVertex[3];
char *planes_used = MEM_callocN(sizeof(char) * len, __func__);
/* python */
PyObject *py_verts = PyList_New(0);
PyObject *py_plene_index = PyList_New(0);
for (i = 0; i < len; i++) {
const float *N1 = planes[i];
for (j = i + 1; j < len; j++) {
const float *N2 = planes[j];
cross_v3_v3v3(n1n2, N1, N2);
if (len_squared_v3(n1n2) > eps) {
for (k = j + 1; k < len; k++) {
const float *N3 = planes[k];
cross_v3_v3v3(n2n3, N2, N3);
if (len_squared_v3(n2n3) > eps) {
cross_v3_v3v3(n3n1, N3, N1);
if (len_squared_v3(n3n1) > eps) {
const float quotient = dot_v3v3(N1, n2n3);
if (fabsf(quotient) > eps) {
/* potentialVertex = (n2n3 * N1[3] + n3n1 * N2[3] + n1n2 * N3[3]) * (-1.0 / quotient); */
const float quotient_ninv = -1.0f / quotient;
potentialVertex[0] = ((n2n3[0] * N1[3]) + (n3n1[0] * N2[3]) + (n1n2[0] * N3[3])) * quotient_ninv;
potentialVertex[1] = ((n2n3[1] * N1[3]) + (n3n1[1] * N2[3]) + (n1n2[1] * N3[3])) * quotient_ninv;
potentialVertex[2] = ((n2n3[2] * N1[3]) + (n3n1[2] * N2[3]) + (n1n2[2] * N3[3])) * quotient_ninv;
for (l = 0; l < len; l++) {
const float *NP = planes[l];
if ((dot_v3v3(NP, potentialVertex) + NP[3]) > 0.000001f) {
break;
}
}
if (l == len) { /* ok */
/* python */
PyObject *item = Vector_CreatePyObject(potentialVertex, 3, Py_NEW, NULL);
PyList_Append(py_verts, item);
Py_DECREF(item);
planes_used[i] = planes_used[j] = planes_used[k] = TRUE;
}
}
}
}
}
}
}
}
PyMem_Free(planes);
/* now make a list of used planes */
for (i = 0; i < len; i++) {
if (planes_used[i]) {
PyObject *item = PyLong_FromLong(i);
PyList_Append(py_plene_index, item);
Py_DECREF(item);
}
}
MEM_freeN(planes_used);
{
PyObject *ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, py_verts);
PyTuple_SET_ITEM(ret, 1, py_plene_index);
return ret;
}
}
}
#ifndef MATH_STANDALONE
PyDoc_STRVAR(M_Geometry_interpolate_bezier_doc,
@@ -1279,6 +1382,7 @@ static PyMethodDef M_Geometry_methods[] = {
{"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
{"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},
{"barycentric_transform", (PyCFunction) M_Geometry_barycentric_transform, METH_VARARGS, M_Geometry_barycentric_transform_doc},
{"points_in_planes", (PyCFunction) M_Geometry_points_in_planes, METH_VARARGS, M_Geometry_points_in_planes_doc},
#ifndef MATH_STANDALONE
{"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
{"tessellate_polygon", (PyCFunction) M_Geometry_tessellate_polygon, METH_O, M_Geometry_tessellate_polygon_doc},