svn merge -r 21041:21301 https://svn.blender.org/svnroot/bf-blender/branches/blender2.5/blender
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* $Id: Mathutils.c 20922 2009-06-16 07:16:51Z campbellbarton $
|
||||
* $Id$
|
||||
*
|
||||
* ***** BEGIN GPL LICENSE BLOCK *****
|
||||
*
|
||||
@@ -96,7 +96,7 @@ struct PyMethodDef M_Mathutils_methods[] = {
|
||||
|
||||
#if (PY_VERSION_HEX >= 0x03000000)
|
||||
static struct PyModuleDef M_Mathutils_module_def = {
|
||||
{}, /* m_base */
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"Mathutils", /* m_name */
|
||||
M_Mathutils_doc, /* m_doc */
|
||||
0, /* m_size */
|
||||
@@ -137,81 +137,12 @@ PyObject *Mathutils_Init(const char *from)
|
||||
PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
|
||||
PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
|
||||
|
||||
mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
|
||||
|
||||
return (submodule);
|
||||
}
|
||||
|
||||
//-----------------------------METHODS----------------------------
|
||||
//----------------column_vector_multiplication (internal)---------
|
||||
//COLUMN VECTOR Multiplication (Matrix X Vector)
|
||||
// [1][2][3] [a]
|
||||
// [4][5][6] * [b]
|
||||
// [7][8][9] [c]
|
||||
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
|
||||
PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
|
||||
{
|
||||
float vecNew[4], vecCopy[4];
|
||||
double dot = 0.0f;
|
||||
int x, y, z = 0;
|
||||
|
||||
if(mat->rowSize != vec->size){
|
||||
if(mat->rowSize == 4 && vec->size != 3){
|
||||
PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
|
||||
return NULL;
|
||||
}else{
|
||||
vecCopy[3] = 1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for(x = 0; x < vec->size; x++){
|
||||
vecCopy[x] = vec->vec[x];
|
||||
}
|
||||
|
||||
for(x = 0; x < mat->rowSize; x++) {
|
||||
for(y = 0; y < mat->colSize; y++) {
|
||||
dot += mat->matrix[x][y] * vecCopy[y];
|
||||
}
|
||||
vecNew[z++] = (float)dot;
|
||||
dot = 0.0f;
|
||||
}
|
||||
return newVectorObject(vecNew, vec->size, Py_NEW);
|
||||
}
|
||||
|
||||
//-----------------row_vector_multiplication (internal)-----------
|
||||
//ROW VECTOR Multiplication - Vector X Matrix
|
||||
//[x][y][z] * [1][2][3]
|
||||
// [4][5][6]
|
||||
// [7][8][9]
|
||||
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
|
||||
PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
|
||||
{
|
||||
float vecNew[4], vecCopy[4];
|
||||
double dot = 0.0f;
|
||||
int x, y, z = 0, vec_size = vec->size;
|
||||
|
||||
if(mat->colSize != vec_size){
|
||||
if(mat->rowSize == 4 && vec_size != 3){
|
||||
PyErr_SetString(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same");
|
||||
return NULL;
|
||||
}else{
|
||||
vecCopy[3] = 1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for(x = 0; x < vec_size; x++){
|
||||
vecCopy[x] = vec->vec[x];
|
||||
}
|
||||
|
||||
//muliplication
|
||||
for(x = 0; x < mat->colSize; x++) {
|
||||
for(y = 0; y < mat->rowSize; y++) {
|
||||
dot += mat->matrix[y][x] * vecCopy[y];
|
||||
}
|
||||
vecNew[z++] = (float)dot;
|
||||
dot = 0.0f;
|
||||
}
|
||||
return newVectorObject(vecNew, vec_size, Py_NEW);
|
||||
}
|
||||
|
||||
//-----------------quat_rotation (internal)-----------
|
||||
//This function multiplies a vector/point * quat or vice versa
|
||||
//to rotate the point/vector by the quaternion
|
||||
@@ -224,8 +155,15 @@ PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
|
||||
|
||||
if(QuaternionObject_Check(arg1)){
|
||||
quat = (QuaternionObject*)arg1;
|
||||
if(!BaseMath_ReadCallback(quat))
|
||||
return NULL;
|
||||
|
||||
if(VectorObject_Check(arg2)){
|
||||
vec = (VectorObject*)arg2;
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
|
||||
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
|
||||
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
|
||||
@@ -238,12 +176,19 @@ PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
|
||||
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
|
||||
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
|
||||
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
|
||||
return newVectorObject(rot, 3, Py_NEW);
|
||||
return newVectorObject(rot, 3, Py_NEW, NULL);
|
||||
}
|
||||
}else if(VectorObject_Check(arg1)){
|
||||
vec = (VectorObject*)arg1;
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
if(QuaternionObject_Check(arg2)){
|
||||
quat = (QuaternionObject*)arg2;
|
||||
if(!BaseMath_ReadCallback(quat))
|
||||
return NULL;
|
||||
|
||||
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
|
||||
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
|
||||
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
|
||||
@@ -256,7 +201,7 @@ PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
|
||||
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
|
||||
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
|
||||
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
|
||||
return newVectorObject(rot, 3, Py_NEW);
|
||||
return newVectorObject(rot, 3, Py_NEW, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -308,6 +253,9 @@ static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
|
||||
if(vec1->size != vec2->size)
|
||||
goto AttributeError1; //bad sizes
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
|
||||
return NULL;
|
||||
|
||||
//since size is the same....
|
||||
size = vec1->size;
|
||||
|
||||
@@ -327,8 +275,11 @@ static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
|
||||
|
||||
angleRads = (double)saacos(dot);
|
||||
|
||||
#ifdef USE_MATHUTILS_DEG
|
||||
return PyFloat_FromDouble(angleRads * (180/ Py_PI));
|
||||
|
||||
#else
|
||||
return PyFloat_FromDouble(angleRads);
|
||||
#endif
|
||||
AttributeError1:
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n");
|
||||
return NULL;
|
||||
@@ -353,11 +304,14 @@ static PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
|
||||
return NULL;
|
||||
|
||||
for(x = 0; x < vec1->size; x++) {
|
||||
vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
|
||||
}
|
||||
return newVectorObject(vec, vec1->size, Py_NEW);
|
||||
return newVectorObject(vec, vec1->size, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.ProjectVecs() -------------
|
||||
//projects vector 1 onto vector 2
|
||||
@@ -377,6 +331,10 @@ static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2))
|
||||
return NULL;
|
||||
|
||||
|
||||
//since they are the same size...
|
||||
size = vec1->size;
|
||||
|
||||
@@ -390,7 +348,7 @@ static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
|
||||
for(x = 0; x < size; x++) {
|
||||
vec[x] = (float)(dot * vec2->vec[x]);
|
||||
}
|
||||
return newVectorObject(vec, size, Py_NEW);
|
||||
return newVectorObject(vec, size, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------MATRIX FUNCTIONS--------------------
|
||||
//----------------------------------Mathutils.RotationMatrix() ----------
|
||||
@@ -409,12 +367,19 @@ static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
#ifdef USE_MATHUTILS_DEG
|
||||
/* Clamp to -360:360 */
|
||||
while (angle<-360.0f)
|
||||
angle+=360.0;
|
||||
while (angle>360.0f)
|
||||
angle-=360.0;
|
||||
#else
|
||||
while (angle<-(Py_PI*2))
|
||||
angle+=(Py_PI*2);
|
||||
while (angle>(Py_PI*2))
|
||||
angle-=(Py_PI*2);
|
||||
#endif
|
||||
|
||||
if(matSize != 2 && matSize != 3 && matSize != 4) {
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
|
||||
@@ -439,9 +404,16 @@ static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
}
|
||||
#ifdef USE_MATHUTILS_DEG
|
||||
//convert to radians
|
||||
angle = angle * (float) (Py_PI / 180);
|
||||
#endif
|
||||
|
||||
if(axis == NULL && matSize == 2) {
|
||||
//2D rotation matrix
|
||||
mat[0] = (float) cos (angle);
|
||||
@@ -521,7 +493,7 @@ static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
|
||||
mat[3] = 0.0f;
|
||||
}
|
||||
//pass to matrix creation
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW);
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.TranslationMatrix() -------
|
||||
//creates a translation matrix
|
||||
@@ -538,13 +510,17 @@ static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * v
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
//create a identity matrix and add translation
|
||||
Mat4One((float(*)[4]) mat);
|
||||
mat[12] = vec->vec[0];
|
||||
mat[13] = vec->vec[1];
|
||||
mat[14] = vec->vec[2];
|
||||
|
||||
return newMatrixObject(mat, 4, 4, Py_NEW);
|
||||
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.ScaleMatrix() -------------
|
||||
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
||||
@@ -570,6 +546,10 @@ static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
}
|
||||
if(vec == NULL) { //scaling along axis
|
||||
if(matSize == 2) {
|
||||
@@ -618,7 +598,7 @@ static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
|
||||
mat[3] = 0.0f;
|
||||
}
|
||||
//pass to matrix creation
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW);
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
|
||||
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
|
||||
@@ -645,6 +625,10 @@ static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * a
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec))
|
||||
return NULL;
|
||||
|
||||
}
|
||||
if(vec == NULL) { //ortho projection onto cardinal plane
|
||||
if(((strcmp(plane, "x") == 0)
|
||||
@@ -717,7 +701,7 @@ static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * a
|
||||
mat[3] = 0.0f;
|
||||
}
|
||||
//pass to matrix creation
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW);
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.ShearMatrix() -------------
|
||||
//creates a shear matrix
|
||||
@@ -784,7 +768,7 @@ static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
|
||||
mat[3] = 0.0f;
|
||||
}
|
||||
//pass to matrix creation
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW);
|
||||
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------QUATERNION FUNCTIONS-----------------
|
||||
|
||||
@@ -801,6 +785,10 @@ static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(quatU) || !BaseMath_ReadCallback(quatV))
|
||||
return NULL;
|
||||
|
||||
tempQuat[0] = quatU->quat[0];
|
||||
tempQuat[1] = -quatU->quat[1];
|
||||
tempQuat[2] = -quatU->quat[2];
|
||||
@@ -813,7 +801,7 @@ static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
|
||||
tempQuat[x] /= (float)(dot * dot);
|
||||
}
|
||||
QuatMul(quat, tempQuat, quatV->quat);
|
||||
return newQuaternionObject(quat, Py_NEW);
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.Slerp() ------------------
|
||||
//attemps to interpolate 2 quaternions and return the result
|
||||
@@ -828,6 +816,10 @@ static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
|
||||
PyErr_SetString(PyExc_TypeError, "Mathutils.Slerp(): expected Quaternion types and float");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(quatU) || !BaseMath_ReadCallback(quatV))
|
||||
return NULL;
|
||||
|
||||
if(param > 1.0f || param < 0.0f) {
|
||||
PyErr_SetString(PyExc_AttributeError, "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
|
||||
return NULL;
|
||||
@@ -870,7 +862,7 @@ static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
|
||||
quat[2] = (float)(quat_u[2] * x + quat_v[2] * y);
|
||||
quat[3] = (float)(quat_u[3] * x + quat_v[3] * y);
|
||||
|
||||
return newQuaternionObject(quat, Py_NEW);
|
||||
return newQuaternionObject(quat, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------EULER FUNCTIONS----------------------
|
||||
//---------------------------------INTERSECTION FUNCTIONS--------------------
|
||||
@@ -891,6 +883,9 @@ static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(ray) || !BaseMath_ReadCallback(ray_off))
|
||||
return NULL;
|
||||
|
||||
VECCOPY(v1, vec1->vec);
|
||||
VECCOPY(v2, vec2->vec);
|
||||
VECCOPY(v3, vec3->vec);
|
||||
@@ -941,7 +936,7 @@ static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
|
||||
VecMulf(dir, t);
|
||||
VecAddf(pvec, orig, dir);
|
||||
|
||||
return newVectorObject(pvec, 3, Py_NEW);
|
||||
return newVectorObject(pvec, 3, Py_NEW, NULL);
|
||||
}
|
||||
//----------------------------------Mathutils.LineIntersect() -------------------
|
||||
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
|
||||
@@ -959,6 +954,10 @@ static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
|
||||
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
|
||||
return NULL;
|
||||
|
||||
if( vec1->size == 3 || vec1->size == 2) {
|
||||
int result;
|
||||
|
||||
@@ -994,8 +993,8 @@ static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
|
||||
}
|
||||
else {
|
||||
tuple = PyTuple_New( 2 );
|
||||
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) );
|
||||
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) );
|
||||
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW, NULL) );
|
||||
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW, NULL) );
|
||||
return tuple;
|
||||
}
|
||||
}
|
||||
@@ -1029,6 +1028,10 @@ static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
|
||||
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3) || !BaseMath_ReadCallback(vec4))
|
||||
return NULL;
|
||||
|
||||
VECCOPY(v1, vec1->vec);
|
||||
VECCOPY(v2, vec2->vec);
|
||||
VECCOPY(v3, vec3->vec);
|
||||
@@ -1052,7 +1055,7 @@ static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
|
||||
VecAddf(n1, n2, n1);
|
||||
Normalize(n1);
|
||||
|
||||
return newVectorObject(n1, 3, Py_NEW);
|
||||
return newVectorObject(n1, 3, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
//----------------------------Mathutils.TriangleNormal() -------------------
|
||||
@@ -1073,6 +1076,9 @@ static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
|
||||
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
|
||||
return NULL;
|
||||
|
||||
VECCOPY(v1, vec1->vec);
|
||||
VECCOPY(v2, vec2->vec);
|
||||
@@ -1085,7 +1091,7 @@ static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
|
||||
Crossf(n, e2, e1);
|
||||
Normalize(n);
|
||||
|
||||
return newVectorObject(n, 3, Py_NEW);
|
||||
return newVectorObject(n, 3, Py_NEW, NULL);
|
||||
}
|
||||
|
||||
//--------------------------------- AREA FUNCTIONS--------------------
|
||||
@@ -1105,6 +1111,9 @@ static PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args )
|
||||
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if(!BaseMath_ReadCallback(vec1) || !BaseMath_ReadCallback(vec2) || !BaseMath_ReadCallback(vec3))
|
||||
return NULL;
|
||||
|
||||
if (vec1->size == 3) {
|
||||
VECCOPY(v1, vec1->vec);
|
||||
@@ -1154,8 +1163,8 @@ int EXPP_FloatsAreEqual(float A, float B, int floatSteps)
|
||||
}
|
||||
/*---------------------- EXPP_VectorsAreEqual -------------------------
|
||||
Builds on EXPP_FloatsAreEqual to test vectors */
|
||||
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps){
|
||||
|
||||
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
|
||||
{
|
||||
int x;
|
||||
for (x=0; x< size; x++){
|
||||
if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
|
||||
@@ -1165,6 +1174,86 @@ int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps){
|
||||
}
|
||||
|
||||
|
||||
/* Mathutils Callbacks */
|
||||
|
||||
/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
|
||||
Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
|
||||
|
||||
int Mathutils_RegisterCallback(Mathutils_Callback *cb)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* find the first free slot */
|
||||
for(i= 0; mathutils_callbacks[i]; i++) {
|
||||
if(mathutils_callbacks[i]==cb) /* alredy registered? */
|
||||
return i;
|
||||
}
|
||||
|
||||
mathutils_callbacks[i] = cb;
|
||||
return i;
|
||||
}
|
||||
|
||||
/* use macros to check for NULL */
|
||||
int _BaseMathObject_ReadCallback(BaseMathObject *self)
|
||||
{
|
||||
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
||||
if(cb->get(self->cb_user, self->cb_subtype, self->data))
|
||||
return 1;
|
||||
|
||||
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _BaseMathObject_WriteCallback(BaseMathObject *self)
|
||||
{
|
||||
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
||||
if(cb->set(self->cb_user, self->cb_subtype, self->data))
|
||||
return 1;
|
||||
|
||||
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
|
||||
{
|
||||
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
||||
if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
|
||||
return 1;
|
||||
|
||||
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
|
||||
{
|
||||
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
|
||||
if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
|
||||
return 1;
|
||||
|
||||
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* BaseMathObject generic functions for all mathutils types */
|
||||
PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
|
||||
{
|
||||
PyObject *ret= self->cb_user ? self->cb_user : Py_None;
|
||||
Py_INCREF(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
|
||||
{
|
||||
return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
|
||||
}
|
||||
|
||||
void BaseMathObject_dealloc(BaseMathObject * self)
|
||||
{
|
||||
/* only free non wrapped */
|
||||
if(self->wrapped != Py_WRAP)
|
||||
PyMem_Free(self->data);
|
||||
|
||||
Py_XDECREF(self->cb_user);
|
||||
Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
|
||||
}
|
||||
|
||||
//#######################################################################
|
||||
//#############################DEPRECATED################################
|
||||
|
||||
Reference in New Issue
Block a user