This commit is contained in:
2009-07-02 11:28:42 +00:00
parent 2acac0ff99
commit b14298f959
825 changed files with 14547 additions and 77617 deletions

View File

@@ -1,5 +1,5 @@
/*
* $Id: matrix.c 20249 2009-05-18 04:27:48Z campbellbarton $
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
@@ -31,19 +31,72 @@
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
/* matrix vector callbacks */
int mathutils_matrix_vector_cb_index= -1;
static int mathutils_matrix_vector_check(MatrixObject *self)
{
return BaseMath_ReadCallback(self);
}
static int mathutils_matrix_vector_get(MatrixObject *self, int subtype, float *vec_from)
{
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i<self->colSize; i++)
vec_from[i]= self->matrix[subtype][i];
return 1;
}
static int mathutils_matrix_vector_set(MatrixObject *self, int subtype, float *vec_to)
{
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i<self->colSize; i++)
self->matrix[subtype][i]= vec_to[i];
BaseMath_WriteCallback(self);
return 1;
}
static int mathutils_matrix_vector_get_index(MatrixObject *self, int subtype, float *vec_from, int index)
{
if(!BaseMath_ReadCallback(self))
return 0;
vec_from[index]= self->matrix[subtype][index];
return 1;
}
static int mathutils_matrix_vector_set_index(MatrixObject *self, int subtype, float *vec_to, int index)
{
if(!BaseMath_ReadCallback(self))
return 0;
self->matrix[subtype][index]= vec_to[index];
BaseMath_WriteCallback(self);
return 1;
}
Mathutils_Callback mathutils_matrix_vector_cb = {
mathutils_matrix_vector_check,
mathutils_matrix_vector_get,
mathutils_matrix_vector_set,
mathutils_matrix_vector_get_index,
mathutils_matrix_vector_set_index
};
/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
/*-------------------------DOC STRINGS ---------------------------*/
static char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
static char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
static char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
static char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
static char Matrix_Invert_doc[] = "() - set the matrix to it's inverse if an inverse is possible";
static char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
static char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
static char Matrix_scalePart_doc[] = "() - convert matrix to a 3D vector";
static char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
static char Matrix_toEuler_doc[] = "(eul_compat) - convert matrix to a euler angle rotation, optional euler argument that the new euler will be made compatible with.";
static char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
static char Matrix_copy_doc[] = "() - return a copy of the matrix";
static PyObject *Matrix_Zero( MatrixObject * self );
static PyObject *Matrix_Identity( MatrixObject * self );
@@ -60,19 +113,19 @@ static PyObject *Matrix_copy( MatrixObject * self );
/*-----------------------METHOD DEFINITIONS ----------------------*/
static struct PyMethodDef Matrix_methods[] = {
{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
{"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
{"toEuler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc},
{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, NULL},
{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, NULL},
{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, NULL},
{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, NULL},
{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, NULL},
{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, NULL},
{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, NULL},
{"scalePart", (PyCFunction) Matrix_scalePart, METH_NOARGS, NULL},
{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, NULL},
{"toEuler", (PyCFunction) Matrix_toEuler, METH_VARARGS, NULL},
{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, NULL},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, NULL},
{NULL, NULL, 0, NULL}
};
@@ -93,18 +146,16 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
} else if (argSize == 0) { //return empty 4D matrix
return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW);
return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
}else if (argSize == 1){
//copy constructor for matrix objects
argObject = PyTuple_GET_ITEM(args, 0);
if(MatrixObject_Check(argObject)){
mat = (MatrixObject*)argObject;
if(!BaseMath_ReadCallback(mat))
return NULL;
argSize = mat->rowSize; //rows
seqSize = mat->colSize; //col
for(i = 0; i < (seqSize * argSize); i++){
matrix[i] = mat->contigPtr[i];
}
memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
}
}else{ //2-4 arguments (all seqs? all same size?)
for(i =0; i < argSize; i++){
@@ -149,7 +200,7 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
}
}
}
return newMatrixObject(matrix, argSize, seqSize, Py_NEW);
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
/*-----------------------------METHODS----------------------------*/
@@ -158,6 +209,9 @@ static PyObject *Matrix_toQuat(MatrixObject * self)
{
float quat[4];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
PyErr_SetString(PyExc_AttributeError, "Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
@@ -169,22 +223,34 @@ static PyObject *Matrix_toQuat(MatrixObject * self)
Mat4ToQuat((float (*)[4])*self->matrix, quat);
}
return newQuaternionObject(quat, Py_NEW);
return newQuaternionObject(quat, Py_NEW, NULL);
}
/*---------------------------Matrix.toEuler() --------------------*/
PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
{
float eul[3], eul_compatf[3];
EulerObject *eul_compat = NULL;
#ifdef USE_MATHUTILS_DEG
int x;
#endif
if(!BaseMath_ReadCallback(self))
return NULL;
if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat))
return NULL;
if(eul_compat) {
if(!BaseMath_ReadCallback(eul_compat))
return NULL;
#ifdef USE_MATHUTILS_DEG
for(x = 0; x < 3; x++) {
eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180);
}
#else
VECCOPY(eul_compatf, eul_compat->eul);
#endif
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
@@ -202,28 +268,33 @@ PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
PyErr_SetString(PyExc_AttributeError, "Matrix.toEuler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
#ifdef USE_MATHUTILS_DEG
/*have to convert to degrees*/
for(x = 0; x < 3; x++) {
eul[x] *= (float) (180 / Py_PI);
}
return newEulerObject(eul, Py_NEW);
#endif
return newEulerObject(eul, Py_NEW, NULL);
}
/*---------------------------Matrix.resize4x4() ------------------*/
PyObject *Matrix_Resize4x4(MatrixObject * self)
{
int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
if(self->data.blend_data){
PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - only python matrices");
if(self->wrapped==Py_WRAP){
PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
return NULL;
}
self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
if(self->data.py_data == NULL) {
if(self->cb_user){
PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
return NULL;
}
self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
if(self->contigPtr == NULL) {
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
return NULL;
}
self->contigPtr = self->data.py_data; /*force*/
self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
if(self->matrix == NULL) {
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
@@ -266,7 +337,10 @@ PyObject *Matrix_Resize4x4(MatrixObject * self)
PyObject *Matrix_TranslationPart(MatrixObject * self)
{
float vec[4];
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 4){
PyErr_SetString(PyExc_AttributeError, "Matrix.translationPart: inappropriate matrix size");
return NULL;
@@ -276,7 +350,7 @@ PyObject *Matrix_TranslationPart(MatrixObject * self)
vec[1] = self->matrix[3][1];
vec[2] = self->matrix[3][2];
return newVectorObject(vec, 3, Py_NEW);
return newVectorObject(vec, 3, Py_NEW, NULL);
}
/*---------------------------Matrix.rotationPart() ---------------*/
PyObject *Matrix_RotationPart(MatrixObject * self)
@@ -284,6 +358,9 @@ PyObject *Matrix_RotationPart(MatrixObject * self)
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 3){
PyErr_SetString(PyExc_AttributeError, "Matrix.rotationPart: inappropriate matrix size\n");
return NULL;
@@ -299,7 +376,7 @@ PyObject *Matrix_RotationPart(MatrixObject * self)
mat[7] = self->matrix[2][1];
mat[8] = self->matrix[2][2];
return newMatrixObject(mat, 3, 3, Py_NEW);
return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
}
/*---------------------------Matrix.scalePart() --------------------*/
PyObject *Matrix_scalePart(MatrixObject * self)
@@ -307,6 +384,9 @@ PyObject *Matrix_scalePart(MatrixObject * self)
float scale[3], rot[3];
float mat[3][3], imat[3][3], tmat[3][3];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize == 4 && self->rowSize == 4)
Mat3CpyMat4(mat, (float (*)[4])*self->matrix);
@@ -325,7 +405,7 @@ PyObject *Matrix_scalePart(MatrixObject * self)
scale[0]= tmat[0][0];
scale[1]= tmat[1][1];
scale[2]= tmat[2][2];
return newVectorObject(scale, 3, Py_NEW);
return newVectorObject(scale, 3, Py_NEW, NULL);
}
/*---------------------------Matrix.invert() ---------------------*/
PyObject *Matrix_Invert(MatrixObject * self)
@@ -337,6 +417,9 @@ PyObject *Matrix_Invert(MatrixObject * self)
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
return NULL;
@@ -377,6 +460,7 @@ PyObject *Matrix_Invert(MatrixObject * self)
return NULL;
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
@@ -387,6 +471,9 @@ PyObject *Matrix_Determinant(MatrixObject * self)
{
float det = 0.0f;
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
return NULL;
@@ -412,6 +499,9 @@ PyObject *Matrix_Transpose(MatrixObject * self)
{
float t = 0.0f;
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
return NULL;
@@ -427,6 +517,7 @@ PyObject *Matrix_Transpose(MatrixObject * self)
Mat4Transp((float (*)[4])*self->matrix);
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
@@ -436,18 +527,25 @@ PyObject *Matrix_Transpose(MatrixObject * self)
PyObject *Matrix_Zero(MatrixObject * self)
{
int row, col;
for(row = 0; row < self->rowSize; row++) {
for(col = 0; col < self->colSize; col++) {
self->matrix[row][col] = 0.0f;
}
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.identity(() ------------------*/
PyObject *Matrix_Identity(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
return NULL;
@@ -464,6 +562,9 @@ PyObject *Matrix_Identity(MatrixObject * self)
Mat4One((float (*)[4]) *self->matrix);
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
@@ -471,19 +572,10 @@ PyObject *Matrix_Identity(MatrixObject * self)
/*---------------------------Matrix.inverted() ------------------*/
PyObject *Matrix_copy(MatrixObject * self)
{
return (PyObject*)(MatrixObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW);
}
/*----------------------------dealloc()(internal) ----------------*/
/*free the py_object*/
static void Matrix_dealloc(MatrixObject * self)
{
PyMem_Free(self->matrix);
/*only free py_data*/
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
if(!BaseMath_ReadCallback(self))
return NULL;
return (PyObject*)newMatrixObject((float (*))*self->matrix, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
}
/*----------------------------print object (internal)-------------*/
@@ -493,6 +585,9 @@ static PyObject *Matrix_repr(MatrixObject * self)
int x, y;
char buffer[48], str[1024];
if(!BaseMath_ReadCallback(self))
return NULL;
BLI_strncpy(str,"",1024);
for(x = 0; x < self->rowSize; x++){
sprintf(buffer, "[");
@@ -529,6 +624,9 @@ static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int compa
matA = (MatrixObject*)objectA;
matB = (MatrixObject*)objectB;
if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
return NULL;
if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
@@ -562,8 +660,7 @@ static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int compa
Py_RETURN_FALSE;
}
}
/*------------------------tp_doc*/
static char MatrixObject_doc[] = "This is a wrapper for matrix objects.";
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
@@ -576,11 +673,14 @@ static int Matrix_len(MatrixObject * self)
the wrapped vector gives direct access to the matrix data*/
static PyObject *Matrix_item(MatrixObject * self, int i)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(i < 0 || i >= self->rowSize) {
PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
return NULL;
}
return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
@@ -590,6 +690,9 @@ static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
float vec[4];
PyObject *m, *f;
if(!BaseMath_ReadCallback(self))
return -1;
if(i >= self->rowSize || i < 0){
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad row\n");
return -1;
@@ -623,6 +726,8 @@ static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
for(y = 0; y < size; y++){
self->matrix[i][y] = vec[y];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
@@ -636,6 +741,9 @@ static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
@@ -644,21 +752,24 @@ static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
}
return list;
}
/*----------------------------object[z:y]------------------------
sequence slice (set)*/
static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
PyObject * seq)
static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
{
int i, x, y, size, sub_size = 0;
float mat[16], f;
PyObject *subseq;
PyObject *m;
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
begin = MIN2(begin,end);
@@ -716,6 +827,8 @@ static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
for(x = 0; x < (size * sub_size); x++){
self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
@@ -738,6 +851,10 @@ static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
@@ -749,7 +866,7 @@ static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj - obj------------------------------
subtraction*/
@@ -767,6 +884,10 @@ static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
@@ -778,7 +899,7 @@ static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj * obj------------------------------
mulplication*/
@@ -791,8 +912,16 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
double dot = 0.0f;
MatrixObject *mat1 = NULL, *mat2 = NULL;
if(MatrixObject_Check(m1)) mat1 = (MatrixObject*)m1;
if(MatrixObject_Check(m2)) mat2 = (MatrixObject*)m2;
if(MatrixObject_Check(m1)) {
mat1 = (MatrixObject*)m1;
if(!BaseMath_ReadCallback(mat1))
return NULL;
}
if(MatrixObject_Check(m2)) {
mat2 = (MatrixObject*)m2;
if(!BaseMath_ReadCallback(mat2))
return NULL;
}
if(mat1 && mat2) { /*MATRIX * MATRIX*/
if(mat1->colSize != mat2->rowSize){
@@ -809,7 +938,7 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
}
}
return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW, NULL);
}
if(mat1==NULL){
@@ -820,7 +949,7 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
@@ -829,7 +958,7 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
else /* if(mat1) { */ {
if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
return column_vector_multiplication(mat1, (VectorObject *)m2);
return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
}
else {
scalar= PyFloat_AsDouble(m2);
@@ -839,7 +968,7 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
@@ -851,6 +980,9 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
}
static PyObject* Matrix_inv(MatrixObject *self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return Matrix_Invert(self);
}
@@ -864,6 +996,123 @@ static PySequenceMethods Matrix_SeqMethods = {
(ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */
};
#if (PY_VERSION_HEX >= 0x03000000)
static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += self->rowSize;
return Matrix_item(self, i);
} else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyList_New(0);
}
else if (step == 1) {
return Matrix_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"vector indices must be integers, not %.200s",
item->ob_type->tp_name);
return NULL;
}
}
static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += self->rowSize;
return Matrix_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Matrix_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"matrix indices must be integers, not %.200s",
item->ob_type->tp_name);
return -1;
}
}
static PyMappingMethods Matrix_AsMapping = {
(lenfunc)Matrix_len,
(binaryfunc)Matrix_subscript,
(objobjargproc)Matrix_ass_subscript
};
#endif /* (PY_VERSION_HEX >= 0x03000000) */
#if (PY_VERSION_HEX >= 0x03000000)
static PyNumberMethods Matrix_NumMethods = {
(binaryfunc) Matrix_add, /*nb_add*/
(binaryfunc) Matrix_sub, /*nb_subtract*/
(binaryfunc) Matrix_mul, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
(unaryfunc) 0, /*nb_negative*/
(unaryfunc) 0, /*tp_positive*/
(unaryfunc) 0, /*tp_absolute*/
(inquiry) 0, /*tp_bool*/
(unaryfunc) Matrix_inv, /*nb_invert*/
0, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
0, /*nb_int*/
0, /*nb_reserved*/
0, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
};
#else
static PyNumberMethods Matrix_NumMethods = {
(binaryfunc) Matrix_add, /* __add__ */
(binaryfunc) Matrix_sub, /* __sub__ */
@@ -889,6 +1138,7 @@ static PyNumberMethods Matrix_NumMethods = {
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
#endif
static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
{
@@ -900,21 +1150,15 @@ static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
return PyLong_FromLong((long) self->colSize);
}
static PyObject *Matrix_getWrapped( MatrixObject * self, void *type )
{
if (self->wrapped == Py_WRAP)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Matrix_getseters[] = {
{"rowSize", (getter)Matrix_getRowSize, (setter)NULL, "", NULL},
{"colSize", (getter)Matrix_getColSize, (setter)NULL, "", NULL},
{"wrapped", (getter)Matrix_getWrapped, (setter)NULL, "", NULL},
{"wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, "", NULL},
{"__owner__",(getter)BaseMathObject_getOwner, (setter)NULL, "",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
@@ -930,7 +1174,7 @@ PyTypeObject matrix_Type = {
"matrix", /*tp_name*/
sizeof(MatrixObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Matrix_dealloc, /*tp_dealloc*/
(destructor)BaseMathObject_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
@@ -938,15 +1182,19 @@ PyTypeObject matrix_Type = {
(reprfunc) Matrix_repr, /*tp_repr*/
&Matrix_NumMethods, /*tp_as_number*/
&Matrix_SeqMethods, /*tp_as_sequence*/
0, /*tp_as_mapping*/
#if (PY_VERSION_HEX >= 0x03000000)
&Matrix_AsMapping, /*tp_as_mapping*/
#else
0,
#endif
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
MatrixObject_doc, /*tp_doc*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
(richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
@@ -984,13 +1232,13 @@ self->matrix self->contiguous_ptr (reference to data.xxx)
[4]
[5]
....
self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]*/
self->matrix[1][1] = self->contigPtr[4] */
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
{
MatrixObject *self;
int x, row, col;
@@ -1001,15 +1249,18 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
return NULL;
}
self = PyObject_NEW(MatrixObject, &matrix_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(MatrixObject, &matrix_Type);
self->rowSize = rowSize;
self->colSize = colSize;
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
self->data.blend_data = mat;
self->contigPtr = self->data.blend_data;
self->contigPtr = mat;
/*create pointer array*/
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
if(self->matrix == NULL) { /*allocation failure*/
@@ -1022,16 +1273,15 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
}
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
if(self->data.py_data == NULL) { /*allocation failure*/
self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
if(self->contigPtr == NULL) { /*allocation failure*/
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
return NULL;
}
self->contigPtr = self->data.py_data;
/*create pointer array*/
self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
if(self->matrix == NULL) { /*allocation failure*/
PyMem_Free(self->data.py_data);
PyMem_Free(self->contigPtr);
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
return NULL;
}
@@ -1056,3 +1306,53 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
}
return (PyObject *) self;
}
PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
{
MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *) self;
}
//----------------column_vector_multiplication (internal)---------
//COLUMN VECTOR Multiplication (Matrix X Vector)
// [1][2][3] [a]
// [4][5][6] * [b]
// [7][8][9] [c]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
{
float vecNew[4], vecCopy[4];
double dot = 0.0f;
int x, y, z = 0;
if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
return NULL;
if(mat->rowSize != vec->size){
if(mat->rowSize == 4 && vec->size != 3){
PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
return NULL;
}else{
vecCopy[3] = 1.0f;
}
}
for(x = 0; x < vec->size; x++){
vecCopy[x] = vec->vec[x];
}
for(x = 0; x < mat->rowSize; x++) {
for(y = 0; y < mat->colSize; y++) {
dot += mat->matrix[x][y] * vecCopy[y];
}
vecNew[z++] = (float)dot;
dot = 0.0f;
}
return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
}