BLI: generally improve C++ data structures

The main focus here was to improve the docs significantly. Furthermore,
I reimplemented `Set`, `Map` and `VectorSet`. They are now (usually)
faster, simpler and more customizable. I also rewrote `Stack` to make
it more efficient by avoiding unnecessary copies.

Thanks to everyone who helped with constructive feedback.

Approved by brecht and sybren.

Differential Revision: https://developer.blender.org/D7931
This commit is contained in:
2020-06-09 10:10:56 +02:00
parent 50258d55e7
commit d8678e02ec
47 changed files with 6161 additions and 3164 deletions

View File

@@ -21,71 +21,191 @@
* \ingroup bli
*/
#include <algorithm>
#include <memory>
#include "BLI_utildefines.h"
namespace BLI {
using std::copy;
using std::copy_n;
using std::uninitialized_copy;
using std::uninitialized_copy_n;
using std::uninitialized_fill;
using std::uninitialized_fill_n;
template<typename T> void construct_default(T *ptr)
/**
* Call the default constructor on n consecutive elements. For trivially constructible types, this
* does nothing.
*
* Before:
* ptr: uninitialized
* After:
* ptr: initialized
*/
template<typename T> void default_construct_n(T *ptr, uint n)
{
new (ptr) T();
}
template<typename T> void destruct(T *ptr)
{
ptr->~T();
/* This is not strictly necessary, because the loop below will be optimized away anyway. It is
* nice to make behavior this explicitely, though. */
if (std::is_trivially_constructible<T>::value) {
return;
}
for (uint i = 0; i < n; i++) {
new (ptr + i) T;
}
}
/**
* Call the destructor on n consecutive values. For trivially destructible types, this does
* nothing.
*
* Before:
* ptr: initialized
* After:
* ptr: uninitialized
*/
template<typename T> void destruct_n(T *ptr, uint n)
{
/* This is not strictly necessary, because the loop below will be optimized away anyway. It is
* nice to make behavior this explicitely, though. */
if (std::is_trivially_destructible<T>::value) {
return;
}
for (uint i = 0; i < n; i++) {
ptr[i].~T();
}
}
/**
* Copy n values from src to dst.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: initialized
* dst: initialized
*/
template<typename T> void initialized_copy_n(const T *src, uint n, T *dst)
{
for (uint i = 0; i < n; i++) {
dst[i] = src[i];
}
}
/**
* Copy n values from src to dst.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: initialized
* dst: initialized
*/
template<typename T> void uninitialized_copy_n(const T *src, uint n, T *dst)
{
for (uint i = 0; i < n; i++) {
new (dst + i) T(src[i]);
}
}
/**
* Move n values from src to dst.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: initialized, moved-from
* dst: initialized
*/
template<typename T> void initialized_move_n(T *src, uint n, T *dst)
{
for (uint i = 0; i < n; i++) {
dst[i] = std::move(src[i]);
}
}
/**
* Move n values from src to dst.
*
* Before:
* src: initialized
* dst: uninitialized
* After:
* src: initialized, moved-from
* dst: initialized
*/
template<typename T> void uninitialized_move_n(T *src, uint n, T *dst)
{
std::uninitialized_copy_n(std::make_move_iterator(src), n, dst);
for (uint i = 0; i < n; i++) {
new (dst + i) T(std::move(src[i]));
}
}
template<typename T> void move_n(T *src, uint n, T *dst)
/**
* Relocate n values from src to dst. Relocation is a move followed by destruction of the src
* value.
*
* Before:
* src: initialized
* dst: initialized
* After:
* src: uninitialized
* dst: initialized
*/
template<typename T> void initialized_relocate_n(T *src, uint n, T *dst)
{
std::copy_n(std::make_move_iterator(src), n, dst);
}
template<typename T> void uninitialized_relocate(T *src, T *dst)
{
new (dst) T(std::move(*src));
destruct(src);
initialized_move_n(src, n, dst);
destruct_n(src, n);
}
/**
* Relocate n values from src to dst. Relocation is a move followed by destruction of the src
* value.
*
* Before:
* src: initialized
* dst: uinitialized
* After:
* src: uninitialized
* dst: initialized
*/
template<typename T> void uninitialized_relocate_n(T *src, uint n, T *dst)
{
uninitialized_move_n(src, n, dst);
destruct_n(src, n);
}
template<typename T> void relocate(T *src, T *dst)
/**
* Copy the value to n consecutive elements.
*
* Before:
* dst: initialized
* After:
* dst: initialized
*/
template<typename T> void initialized_fill_n(T *dst, uint n, const T &value)
{
*dst = std::move(*src);
destruct(src);
for (uint i = 0; i < n; i++) {
dst[i] = value;
}
}
template<typename T> void relocate_n(T *src, uint n, T *dst)
/**
* Copy the value to n consecutive elements.
*
* Before:
* dst: uninitialized
* After:
* dst: initialized
*/
template<typename T> void uninitialized_fill_n(T *dst, uint n, const T &value)
{
move_n(src, n, dst);
destruct_n(src, n);
for (uint i = 0; i < n; i++) {
new (dst + i) T(value);
}
}
/**
* The same as std::unique_ptr. This can be removed when we start using C++14.
*/
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&... args)
{
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
@@ -98,13 +218,24 @@ template<typename T> struct DestructValueAtAddress {
}
};
/**
* A destruct_ptr is like unique_ptr, but it will only call the destructor and will not free the
* memory. This is useful when using custom allocators.
*/
template<typename T> using destruct_ptr = std::unique_ptr<T, DestructValueAtAddress<T>>;
template<uint Size, uint Alignment> class alignas(Alignment) AlignedBuffer {
/**
* An `AlignedBuffer` is simply a byte array with the given size and alignment. The buffer will
* not be initialized by the default constructor.
*
* This can be used to reserve memory for C++ objects whose lifetime is different from the
* lifetime of the object they are embedded in. It's used by containers with small buffer
* optimization and hash table implementations.
*/
template<size_t Size, size_t Alignment> class alignas(Alignment) AlignedBuffer {
private:
/* Don't create an empty array. This causes problems with some compilers. */
static constexpr uint ActualSize = (Size > 0) ? Size : 1;
char m_buffer[ActualSize];
char m_buffer[(Size > 0) ? Size : 1];
public:
void *ptr()