ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
This commit is contained in:
@@ -32,202 +32,215 @@
|
||||
#include <string.h>
|
||||
|
||||
/* A few small defines. Keep'em local! */
|
||||
#define SMALL_NUMBER 1.e-8f
|
||||
#define SMALL_NUMBER 1.e-8f
|
||||
|
||||
/********************************** Polygons *********************************/
|
||||
|
||||
MINLINE float cross_tri_v2(const float v1[2], const float v2[2], const float v3[2])
|
||||
{
|
||||
return (v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]);
|
||||
return (v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]);
|
||||
}
|
||||
|
||||
MINLINE float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2])
|
||||
{
|
||||
return 0.5f * ((v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]));
|
||||
return 0.5f * ((v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]));
|
||||
}
|
||||
|
||||
MINLINE float area_tri_v2(const float v1[2], const float v2[2], const float v3[2])
|
||||
{
|
||||
return fabsf(area_tri_signed_v2(v1, v2, v3));
|
||||
return fabsf(area_tri_signed_v2(v1, v2, v3));
|
||||
}
|
||||
|
||||
MINLINE float area_squared_tri_v2(const float v1[2], const float v2[2], const float v3[2])
|
||||
{
|
||||
float area = area_tri_signed_v2(v1, v2, v3);
|
||||
return area * area;
|
||||
float area = area_tri_signed_v2(v1, v2, v3);
|
||||
return area * area;
|
||||
}
|
||||
|
||||
/****************************** Spherical Harmonics **************************/
|
||||
|
||||
MINLINE void zero_sh(float r[9])
|
||||
{
|
||||
memset(r, 0, sizeof(float) * 9);
|
||||
memset(r, 0, sizeof(float) * 9);
|
||||
}
|
||||
|
||||
MINLINE void copy_sh_sh(float r[9], const float a[9])
|
||||
{
|
||||
memcpy(r, a, sizeof(float) * 9);
|
||||
memcpy(r, a, sizeof(float) * 9);
|
||||
}
|
||||
|
||||
MINLINE void mul_sh_fl(float r[9], const float f)
|
||||
{
|
||||
int i;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
r[i] *= f;
|
||||
}
|
||||
for (i = 0; i < 9; i++) {
|
||||
r[i] *= f;
|
||||
}
|
||||
}
|
||||
|
||||
MINLINE void add_sh_shsh(float r[9], const float a[9], const float b[9])
|
||||
{
|
||||
int i;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
r[i] = a[i] + b[i];
|
||||
}
|
||||
for (i = 0; i < 9; i++) {
|
||||
r[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
MINLINE float dot_shsh(const float a[9], const float b[9])
|
||||
{
|
||||
float r = 0.0f;
|
||||
int i;
|
||||
float r = 0.0f;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
r += a[i] * b[i];
|
||||
}
|
||||
for (i = 0; i < 9; i++) {
|
||||
r += a[i] * b[i];
|
||||
}
|
||||
|
||||
return r;
|
||||
return r;
|
||||
}
|
||||
|
||||
MINLINE float diffuse_shv3(float sh[9], const float v[3])
|
||||
{
|
||||
/* See formula (13) in:
|
||||
* "An Efficient Representation for Irradiance Environment Maps" */
|
||||
static const float c1 = 0.429043f, c2 = 0.511664f, c3 = 0.743125f;
|
||||
static const float c4 = 0.886227f, c5 = 0.247708f;
|
||||
float x, y, z, sum;
|
||||
/* See formula (13) in:
|
||||
* "An Efficient Representation for Irradiance Environment Maps" */
|
||||
static const float c1 = 0.429043f, c2 = 0.511664f, c3 = 0.743125f;
|
||||
static const float c4 = 0.886227f, c5 = 0.247708f;
|
||||
float x, y, z, sum;
|
||||
|
||||
x = v[0];
|
||||
y = v[1];
|
||||
z = v[2];
|
||||
x = v[0];
|
||||
y = v[1];
|
||||
z = v[2];
|
||||
|
||||
sum = c1 * sh[8] * (x * x - y * y);
|
||||
sum += c3 * sh[6] * z * z;
|
||||
sum += c4 * sh[0];
|
||||
sum += -c5 * sh[6];
|
||||
sum += 2.0f * c1 * (sh[4] * x * y + sh[7] * x * z + sh[5] * y * z);
|
||||
sum += 2.0f * c2 * (sh[3] * x + sh[1] * y + sh[2] * z);
|
||||
sum = c1 * sh[8] * (x * x - y * y);
|
||||
sum += c3 * sh[6] * z * z;
|
||||
sum += c4 * sh[0];
|
||||
sum += -c5 * sh[6];
|
||||
sum += 2.0f * c1 * (sh[4] * x * y + sh[7] * x * z + sh[5] * y * z);
|
||||
sum += 2.0f * c2 * (sh[3] * x + sh[1] * y + sh[2] * z);
|
||||
|
||||
return sum;
|
||||
return sum;
|
||||
}
|
||||
|
||||
MINLINE void vec_fac_to_sh(float r[9], const float v[3], const float f)
|
||||
{
|
||||
/* See formula (3) in:
|
||||
* "An Efficient Representation for Irradiance Environment Maps" */
|
||||
float sh[9], x, y, z;
|
||||
/* See formula (3) in:
|
||||
* "An Efficient Representation for Irradiance Environment Maps" */
|
||||
float sh[9], x, y, z;
|
||||
|
||||
x = v[0];
|
||||
y = v[1];
|
||||
z = v[2];
|
||||
x = v[0];
|
||||
y = v[1];
|
||||
z = v[2];
|
||||
|
||||
sh[0] = 0.282095f;
|
||||
sh[0] = 0.282095f;
|
||||
|
||||
sh[1] = 0.488603f * y;
|
||||
sh[2] = 0.488603f * z;
|
||||
sh[3] = 0.488603f * x;
|
||||
sh[1] = 0.488603f * y;
|
||||
sh[2] = 0.488603f * z;
|
||||
sh[3] = 0.488603f * x;
|
||||
|
||||
sh[4] = 1.092548f * x * y;
|
||||
sh[5] = 1.092548f * y * z;
|
||||
sh[6] = 0.315392f * (3.0f * z * z - 1.0f);
|
||||
sh[7] = 1.092548f * x * z;
|
||||
sh[8] = 0.546274f * (x * x - y * y);
|
||||
sh[4] = 1.092548f * x * y;
|
||||
sh[5] = 1.092548f * y * z;
|
||||
sh[6] = 0.315392f * (3.0f * z * z - 1.0f);
|
||||
sh[7] = 1.092548f * x * z;
|
||||
sh[8] = 0.546274f * (x * x - y * y);
|
||||
|
||||
mul_sh_fl(sh, f);
|
||||
copy_sh_sh(r, sh);
|
||||
mul_sh_fl(sh, f);
|
||||
copy_sh_sh(r, sh);
|
||||
}
|
||||
|
||||
MINLINE float eval_shv3(float sh[9], const float v[3])
|
||||
{
|
||||
float tmp[9];
|
||||
float tmp[9];
|
||||
|
||||
vec_fac_to_sh(tmp, v, 1.0f);
|
||||
return dot_shsh(tmp, sh);
|
||||
vec_fac_to_sh(tmp, v, 1.0f);
|
||||
return dot_shsh(tmp, sh);
|
||||
}
|
||||
|
||||
MINLINE void madd_sh_shfl(float r[9], const float sh[9], const float f)
|
||||
{
|
||||
float tmp[9];
|
||||
float tmp[9];
|
||||
|
||||
copy_sh_sh(tmp, sh);
|
||||
mul_sh_fl(tmp, f);
|
||||
add_sh_shsh(r, r, tmp);
|
||||
copy_sh_sh(tmp, sh);
|
||||
mul_sh_fl(tmp, f);
|
||||
add_sh_shsh(r, r, tmp);
|
||||
}
|
||||
|
||||
/* get the 2 dominant axis values, 0==X, 1==Y, 2==Z */
|
||||
MINLINE void axis_dominant_v3(int *r_axis_a, int *r_axis_b, const float axis[3])
|
||||
{
|
||||
const float xn = fabsf(axis[0]);
|
||||
const float yn = fabsf(axis[1]);
|
||||
const float zn = fabsf(axis[2]);
|
||||
const float xn = fabsf(axis[0]);
|
||||
const float yn = fabsf(axis[1]);
|
||||
const float zn = fabsf(axis[2]);
|
||||
|
||||
if (zn >= xn && zn >= yn) { *r_axis_a = 0; *r_axis_b = 1; }
|
||||
else if (yn >= xn && yn >= zn) { *r_axis_a = 0; *r_axis_b = 2; }
|
||||
else { *r_axis_a = 1; *r_axis_b = 2; }
|
||||
if (zn >= xn && zn >= yn) {
|
||||
*r_axis_a = 0;
|
||||
*r_axis_b = 1;
|
||||
}
|
||||
else if (yn >= xn && yn >= zn) {
|
||||
*r_axis_a = 0;
|
||||
*r_axis_b = 2;
|
||||
}
|
||||
else {
|
||||
*r_axis_a = 1;
|
||||
*r_axis_b = 2;
|
||||
}
|
||||
}
|
||||
|
||||
/* same as axis_dominant_v3 but return the max value */
|
||||
MINLINE float axis_dominant_v3_max(int *r_axis_a, int *r_axis_b, const float axis[3])
|
||||
{
|
||||
const float xn = fabsf(axis[0]);
|
||||
const float yn = fabsf(axis[1]);
|
||||
const float zn = fabsf(axis[2]);
|
||||
const float xn = fabsf(axis[0]);
|
||||
const float yn = fabsf(axis[1]);
|
||||
const float zn = fabsf(axis[2]);
|
||||
|
||||
if (zn >= xn && zn >= yn) { *r_axis_a = 0; *r_axis_b = 1; return zn; }
|
||||
else if (yn >= xn && yn >= zn) { *r_axis_a = 0; *r_axis_b = 2; return yn; }
|
||||
else { *r_axis_a = 1; *r_axis_b = 2; return xn; }
|
||||
if (zn >= xn && zn >= yn) {
|
||||
*r_axis_a = 0;
|
||||
*r_axis_b = 1;
|
||||
return zn;
|
||||
}
|
||||
else if (yn >= xn && yn >= zn) {
|
||||
*r_axis_a = 0;
|
||||
*r_axis_b = 2;
|
||||
return yn;
|
||||
}
|
||||
else {
|
||||
*r_axis_a = 1;
|
||||
*r_axis_b = 2;
|
||||
return xn;
|
||||
}
|
||||
}
|
||||
|
||||
/* get the single dominant axis value, 0==X, 1==Y, 2==Z */
|
||||
MINLINE int axis_dominant_v3_single(const float vec[3])
|
||||
{
|
||||
const float x = fabsf(vec[0]);
|
||||
const float y = fabsf(vec[1]);
|
||||
const float z = fabsf(vec[2]);
|
||||
return ((x > y) ?
|
||||
((x > z) ? 0 : 2) :
|
||||
((y > z) ? 1 : 2));
|
||||
const float x = fabsf(vec[0]);
|
||||
const float y = fabsf(vec[1]);
|
||||
const float z = fabsf(vec[2]);
|
||||
return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
|
||||
}
|
||||
|
||||
/* the dominant axis of an orthogonal vector */
|
||||
MINLINE int axis_dominant_v3_ortho_single(const float vec[3])
|
||||
{
|
||||
const float x = fabsf(vec[0]);
|
||||
const float y = fabsf(vec[1]);
|
||||
const float z = fabsf(vec[2]);
|
||||
return ((x < y) ?
|
||||
((x < z) ? 0 : 2) :
|
||||
((y < z) ? 1 : 2));
|
||||
const float x = fabsf(vec[0]);
|
||||
const float y = fabsf(vec[1]);
|
||||
const float z = fabsf(vec[2]);
|
||||
return ((x < y) ? ((x < z) ? 0 : 2) : ((y < z) ? 1 : 2));
|
||||
}
|
||||
|
||||
MINLINE int max_axis_v3(const float vec[3])
|
||||
{
|
||||
const float x = vec[0];
|
||||
const float y = vec[1];
|
||||
const float z = vec[2];
|
||||
return ((x > y) ?
|
||||
((x > z) ? 0 : 2) :
|
||||
((y > z) ? 1 : 2));
|
||||
const float x = vec[0];
|
||||
const float y = vec[1];
|
||||
const float z = vec[2];
|
||||
return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
|
||||
}
|
||||
|
||||
MINLINE int min_axis_v3(const float vec[3])
|
||||
{
|
||||
const float x = vec[0];
|
||||
const float y = vec[1];
|
||||
const float z = vec[2];
|
||||
return ((x < y) ?
|
||||
((x < z) ? 0 : 2) :
|
||||
((y < z) ? 1 : 2));
|
||||
const float x = vec[0];
|
||||
const float y = vec[1];
|
||||
const float z = vec[2];
|
||||
return ((x < y) ? ((x < z) ? 0 : 2) : ((y < z) ? 1 : 2));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -238,13 +251,13 @@ MINLINE int min_axis_v3(const float vec[3])
|
||||
*/
|
||||
MINLINE int poly_to_tri_count(const int poly_count, const int corner_count)
|
||||
{
|
||||
BLI_assert(!poly_count || corner_count > poly_count * 2);
|
||||
return corner_count - (poly_count * 2);
|
||||
BLI_assert(!poly_count || corner_count > poly_count * 2);
|
||||
return corner_count - (poly_count * 2);
|
||||
}
|
||||
|
||||
MINLINE float plane_point_side_v3(const float plane[4], const float co[3])
|
||||
{
|
||||
return dot_v3v3(co, plane) + plane[3];
|
||||
return dot_v3v3(co, plane) + plane[3];
|
||||
}
|
||||
|
||||
/* useful to calculate an even width shell, by taking the angle between 2 planes.
|
||||
@@ -253,27 +266,27 @@ MINLINE float plane_point_side_v3(const float plane[4], const float co[3])
|
||||
* the distance gets very high, 180d would be inf, but this case isn't valid */
|
||||
MINLINE float shell_angle_to_dist(const float angle)
|
||||
{
|
||||
return (UNLIKELY(angle < SMALL_NUMBER)) ? 1.0f : fabsf(1.0f / cosf(angle));
|
||||
return (UNLIKELY(angle < SMALL_NUMBER)) ? 1.0f : fabsf(1.0f / cosf(angle));
|
||||
}
|
||||
/**
|
||||
* equivalent to ``shell_angle_to_dist(angle_normalized_v3v3(a, b))``
|
||||
*/
|
||||
MINLINE float shell_v3v3_normalized_to_dist(const float a[3], const float b[3])
|
||||
{
|
||||
const float angle_cos = fabsf(dot_v3v3(a, b));
|
||||
BLI_ASSERT_UNIT_V3(a);
|
||||
BLI_ASSERT_UNIT_V3(b);
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
const float angle_cos = fabsf(dot_v3v3(a, b));
|
||||
BLI_ASSERT_UNIT_V3(a);
|
||||
BLI_ASSERT_UNIT_V3(b);
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
}
|
||||
/**
|
||||
* equivalent to ``shell_angle_to_dist(angle_normalized_v2v2(a, b))``
|
||||
*/
|
||||
MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2])
|
||||
{
|
||||
const float angle_cos = fabsf(dot_v2v2(a, b));
|
||||
BLI_ASSERT_UNIT_V2(a);
|
||||
BLI_ASSERT_UNIT_V2(b);
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
const float angle_cos = fabsf(dot_v2v2(a, b));
|
||||
BLI_ASSERT_UNIT_V2(a);
|
||||
BLI_ASSERT_UNIT_V2(b);
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -281,13 +294,13 @@ MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2])
|
||||
*/
|
||||
MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[3])
|
||||
{
|
||||
float angle_cos;
|
||||
float ab[3];
|
||||
BLI_ASSERT_UNIT_V3(a);
|
||||
BLI_ASSERT_UNIT_V3(b);
|
||||
add_v3_v3v3(ab, a, b);
|
||||
angle_cos = (normalize_v3(ab) != 0.0f) ? fabsf(dot_v3v3(a, ab)) : 0.0f;
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
float angle_cos;
|
||||
float ab[3];
|
||||
BLI_ASSERT_UNIT_V3(a);
|
||||
BLI_ASSERT_UNIT_V3(b);
|
||||
add_v3_v3v3(ab, a, b);
|
||||
angle_cos = (normalize_v3(ab) != 0.0f) ? fabsf(dot_v3v3(a, ab)) : 0.0f;
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -295,13 +308,13 @@ MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[
|
||||
*/
|
||||
MINLINE float shell_v2v2_mid_normalized_to_dist(const float a[2], const float b[2])
|
||||
{
|
||||
float angle_cos;
|
||||
float ab[2];
|
||||
BLI_ASSERT_UNIT_V2(a);
|
||||
BLI_ASSERT_UNIT_V2(b);
|
||||
add_v2_v2v2(ab, a, b);
|
||||
angle_cos = (normalize_v2(ab) != 0.0f) ? fabsf(dot_v2v2(a, ab)) : 0.0f;
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
float angle_cos;
|
||||
float ab[2];
|
||||
BLI_ASSERT_UNIT_V2(a);
|
||||
BLI_ASSERT_UNIT_V2(b);
|
||||
add_v2_v2v2(ab, a, b);
|
||||
angle_cos = (normalize_v2(ab) != 0.0f) ? fabsf(dot_v2v2(a, ab)) : 0.0f;
|
||||
return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
|
||||
}
|
||||
|
||||
#undef SMALL_NUMBER
|
||||
|
||||
Reference in New Issue
Block a user