ClangFormat: apply to source, most of intern

Apply clang format as proposed in T53211.

For details on usage and instructions for migrating branches
without conflicts, see:

https://wiki.blender.org/wiki/Tools/ClangFormat
This commit is contained in:
2019-04-17 06:17:24 +02:00
parent b3dabc200a
commit e12c08e8d1
4481 changed files with 1230080 additions and 1155401 deletions

View File

@@ -23,81 +23,91 @@
ConvertDepthToRadiusOperation::ConvertDepthToRadiusOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_VALUE);
this->addOutputSocket(COM_DT_VALUE);
this->m_inputOperation = NULL;
this->m_fStop = 128.0f;
this->m_cameraObject = NULL;
this->m_maxRadius = 32.0f;
this->m_blurPostOperation = NULL;
this->addInputSocket(COM_DT_VALUE);
this->addOutputSocket(COM_DT_VALUE);
this->m_inputOperation = NULL;
this->m_fStop = 128.0f;
this->m_cameraObject = NULL;
this->m_maxRadius = 32.0f;
this->m_blurPostOperation = NULL;
}
float ConvertDepthToRadiusOperation::determineFocalDistance()
{
if (this->m_cameraObject && this->m_cameraObject->type == OB_CAMERA) {
Camera *camera = (Camera *)this->m_cameraObject->data;
this->m_cam_lens = camera->lens;
return BKE_camera_object_dof_distance(this->m_cameraObject);
}
else {
return 10.0f;
}
if (this->m_cameraObject && this->m_cameraObject->type == OB_CAMERA) {
Camera *camera = (Camera *)this->m_cameraObject->data;
this->m_cam_lens = camera->lens;
return BKE_camera_object_dof_distance(this->m_cameraObject);
}
else {
return 10.0f;
}
}
void ConvertDepthToRadiusOperation::initExecution()
{
float cam_sensor = DEFAULT_SENSOR_WIDTH;
Camera *camera = NULL;
float cam_sensor = DEFAULT_SENSOR_WIDTH;
Camera *camera = NULL;
if (this->m_cameraObject && this->m_cameraObject->type == OB_CAMERA) {
camera = (Camera *)this->m_cameraObject->data;
cam_sensor = BKE_camera_sensor_size(camera->sensor_fit, camera->sensor_x, camera->sensor_y);
}
if (this->m_cameraObject && this->m_cameraObject->type == OB_CAMERA) {
camera = (Camera *)this->m_cameraObject->data;
cam_sensor = BKE_camera_sensor_size(camera->sensor_fit, camera->sensor_x, camera->sensor_y);
}
this->m_inputOperation = this->getInputSocketReader(0);
float focalDistance = determineFocalDistance();
if (focalDistance == 0.0f) focalDistance = 1e10f; /* if the dof is 0.0 then set it to be far away */
this->m_inverseFocalDistance = 1.0f / focalDistance;
this->m_aspect = (this->getWidth() > this->getHeight()) ? (this->getHeight() / (float)this->getWidth()) : (this->getWidth() / (float)this->getHeight());
this->m_aperture = 0.5f * (this->m_cam_lens / (this->m_aspect * cam_sensor)) / this->m_fStop;
const float minsz = min(getWidth(), getHeight());
this->m_dof_sp = minsz / ((cam_sensor / 2.0f) / this->m_cam_lens); // <- == aspect * min(img->x, img->y) / tan(0.5f * fov);
this->m_inputOperation = this->getInputSocketReader(0);
float focalDistance = determineFocalDistance();
if (focalDistance == 0.0f)
focalDistance = 1e10f; /* if the dof is 0.0 then set it to be far away */
this->m_inverseFocalDistance = 1.0f / focalDistance;
this->m_aspect = (this->getWidth() > this->getHeight()) ?
(this->getHeight() / (float)this->getWidth()) :
(this->getWidth() / (float)this->getHeight());
this->m_aperture = 0.5f * (this->m_cam_lens / (this->m_aspect * cam_sensor)) / this->m_fStop;
const float minsz = min(getWidth(), getHeight());
this->m_dof_sp = minsz /
((cam_sensor / 2.0f) /
this->m_cam_lens); // <- == aspect * min(img->x, img->y) / tan(0.5f * fov);
if (this->m_blurPostOperation) {
m_blurPostOperation->setSigma(min(m_aperture * 128.0f, this->m_maxRadius));
}
if (this->m_blurPostOperation) {
m_blurPostOperation->setSigma(min(m_aperture * 128.0f, this->m_maxRadius));
}
}
void ConvertDepthToRadiusOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler)
void ConvertDepthToRadiusOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
float inputValue[4];
float z;
float radius;
this->m_inputOperation->readSampled(inputValue, x, y, sampler);
z = inputValue[0];
if (z != 0.0f) {
float iZ = (1.0f / z);
float inputValue[4];
float z;
float radius;
this->m_inputOperation->readSampled(inputValue, x, y, sampler);
z = inputValue[0];
if (z != 0.0f) {
float iZ = (1.0f / z);
// bug #6656 part 2b, do not rescale
// bug #6656 part 2b, do not rescale
#if 0
bcrad = 0.5f * fabs(aperture * (dof_sp * (cam_invfdist - iZ) - 1.0f));
// scale crad back to original maximum and blend
crad->rect[px] = bcrad + wts->rect[px] * (scf * crad->rect[px] - bcrad);
bcrad = 0.5f * fabs(aperture * (dof_sp * (cam_invfdist - iZ) - 1.0f));
// scale crad back to original maximum and blend
crad->rect[px] = bcrad + wts->rect[px] * (scf * crad->rect[px] - bcrad);
#endif
radius = 0.5f * fabsf(this->m_aperture * (this->m_dof_sp * (this->m_inverseFocalDistance - iZ) - 1.0f));
// 'bug' #6615, limit minimum radius to 1 pixel, not really a solution, but somewhat mitigates the problem
if (radius < 0.0f) radius = 0.0f;
if (radius > this->m_maxRadius) {
radius = this->m_maxRadius;
}
output[0] = radius;
}
else {
output[0] = 0.0f;
}
radius = 0.5f * fabsf(this->m_aperture *
(this->m_dof_sp * (this->m_inverseFocalDistance - iZ) - 1.0f));
// 'bug' #6615, limit minimum radius to 1 pixel, not really a solution, but somewhat mitigates the problem
if (radius < 0.0f)
radius = 0.0f;
if (radius > this->m_maxRadius) {
radius = this->m_maxRadius;
}
output[0] = radius;
}
else {
output[0] = 0.0f;
}
}
void ConvertDepthToRadiusOperation::deinitExecution()
{
this->m_inputOperation = NULL;
this->m_inputOperation = NULL;
}