Compositor: Add support for canvas compositing

This commit adds functionality for operations that require pixel
translation or resizing on "Full Frame" mode, allowing to adjust
their canvas. It fixes most cropping issues in translate, scale,
rotate and transform nodes by adjusting their canvas to the result,
instead of the input canvas.

Operations output buffer is still always on (0,0) position for
easier image algorithm implementation, even when the
canvas is not.

Current limitations (will be addressed on bcon2):
- Displayed translation in Viewer node is limited to 6000px.
- When scaling up the canvas size is limited to the
 scene resolution size x 1.5 . From that point it crops.

If none of these limitations are hit, the Viewer node displays
the full input with any translation.

Differential Revision: https://developer.blender.org/D12466
This commit is contained in:
2021-09-28 19:33:06 +02:00
parent 76377f0176
commit f84fb12f5d
44 changed files with 1066 additions and 368 deletions

View File

@@ -27,55 +27,40 @@ namespace blender::compositor {
TransformOperation::TransformOperation()
{
addInputSocket(DataType::Color);
addInputSocket(DataType::Value);
addInputSocket(DataType::Value);
addInputSocket(DataType::Value);
addInputSocket(DataType::Value);
addInputSocket(DataType::Color, ResizeMode::None);
addInputSocket(DataType::Value, ResizeMode::None);
addInputSocket(DataType::Value, ResizeMode::None);
addInputSocket(DataType::Value, ResizeMode::None);
addInputSocket(DataType::Value, ResizeMode::None);
addOutputSocket(DataType::Color);
translate_factor_x_ = 1.0f;
translate_factor_y_ = 1.0f;
convert_degree_to_rad_ = false;
sampler_ = PixelSampler::Bilinear;
invert_ = false;
max_scale_canvas_size_ = {ScaleOperation::DEFAULT_MAX_SCALE_CANVAS_SIZE,
ScaleOperation::DEFAULT_MAX_SCALE_CANVAS_SIZE};
}
void TransformOperation::set_scale_canvas_max_size(Size2f size)
{
max_scale_canvas_size_ = size;
}
void TransformOperation::init_data()
{
/* Translation. */
translate_x_ = 0;
NodeOperation *x_op = getInputOperation(X_INPUT_INDEX);
if (x_op->get_flags().is_constant_operation) {
translate_x_ = static_cast<ConstantOperation *>(x_op)->get_constant_elem()[0] *
translate_factor_x_;
}
translate_y_ = 0;
NodeOperation *y_op = getInputOperation(Y_INPUT_INDEX);
if (y_op->get_flags().is_constant_operation) {
translate_y_ = static_cast<ConstantOperation *>(y_op)->get_constant_elem()[0] *
translate_factor_y_;
}
/* Scaling. */
scale_center_x_ = getWidth() / 2.0;
scale_center_y_ = getHeight() / 2.0;
constant_scale_ = 1.0f;
NodeOperation *scale_op = getInputOperation(SCALE_INPUT_INDEX);
if (scale_op->get_flags().is_constant_operation) {
constant_scale_ = static_cast<ConstantOperation *>(scale_op)->get_constant_elem()[0];
}
translate_x_ = get_input_operation(X_INPUT_INDEX)->get_constant_value_default(0.0f) *
translate_factor_x_;
translate_y_ = get_input_operation(Y_INPUT_INDEX)->get_constant_value_default(0.0f) *
translate_factor_y_;
/* Rotation. */
rotate_center_x_ = (getWidth() - 1.0) / 2.0;
rotate_center_y_ = (getHeight() - 1.0) / 2.0;
NodeOperation *degree_op = getInputOperation(DEGREE_INPUT_INDEX);
const bool is_constant_degree = degree_op->get_flags().is_constant_operation;
const float degree = is_constant_degree ?
static_cast<ConstantOperation *>(degree_op)->get_constant_elem()[0] :
0.0f;
const float degree = get_input_operation(DEGREE_INPUT_INDEX)->get_constant_value_default(0.0f);
const double rad = convert_degree_to_rad_ ? DEG2RAD((double)degree) : degree;
rotate_cosine_ = cos(rad);
rotate_sine_ = sin(rad);
scale_ = get_input_operation(SCALE_INPUT_INDEX)->get_constant_value_default(1.0f);
}
void TransformOperation::get_area_of_interest(const int input_idx,
@@ -84,26 +69,41 @@ void TransformOperation::get_area_of_interest(const int input_idx,
{
switch (input_idx) {
case IMAGE_INPUT_INDEX: {
BLI_rcti_translate(&r_input_area, translate_x_, translate_y_);
ScaleOperation::scale_area(
r_input_area, scale_center_x_, scale_center_y_, constant_scale_, constant_scale_);
RotateOperation::get_area_rotation_bounds(r_input_area,
rotate_center_x_,
rotate_center_y_,
rotate_sine_,
rotate_cosine_,
r_input_area);
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
const rcti &image_canvas = image_op->get_canvas();
if (invert_) {
/* Scale -> Rotate -> Translate. */
r_input_area = output_area;
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
RotateOperation::get_rotation_area_of_interest(scale_canvas_,
rotate_canvas_,
rotate_sine_,
rotate_cosine_,
r_input_area,
r_input_area);
ScaleOperation::get_scale_area_of_interest(
image_canvas, scale_canvas_, scale_, scale_, r_input_area, r_input_area);
}
else {
/* Translate -> Rotate -> Scale. */
ScaleOperation::get_scale_area_of_interest(
rotate_canvas_, scale_canvas_, scale_, scale_, output_area, r_input_area);
RotateOperation::get_rotation_area_of_interest(translate_canvas_,
rotate_canvas_,
rotate_sine_,
rotate_cosine_,
r_input_area,
r_input_area);
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
}
expand_area_for_sampler(r_input_area, sampler_);
break;
}
case X_INPUT_INDEX:
case Y_INPUT_INDEX:
case DEGREE_INPUT_INDEX: {
r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST;
break;
}
case DEGREE_INPUT_INDEX:
case SCALE_INPUT_INDEX: {
r_input_area = output_area;
r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST;
break;
}
}
@@ -114,8 +114,7 @@ void TransformOperation::update_memory_buffer_partial(MemoryBuffer *output,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX];
MemoryBuffer *input_scale = inputs[SCALE_INPUT_INDEX];
BuffersIterator<float> it = output->iterate_with({input_scale}, area);
BuffersIterator<float> it = output->iterate_with({}, area);
if (invert_) {
transform_inverted(it, input_img);
}
@@ -124,31 +123,111 @@ void TransformOperation::update_memory_buffer_partial(MemoryBuffer *output,
}
}
void TransformOperation::transform(BuffersIterator<float> &it, const MemoryBuffer *input_img)
void TransformOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
for (; !it.is_end(); ++it) {
const float scale = *it.in(0);
float x = it.x - translate_x_;
float y = it.y - translate_y_;
RotateOperation::rotate_coords(
x, y, rotate_center_x_, rotate_center_y_, rotate_sine_, rotate_cosine_);
x = ScaleOperation::scale_coord(x, scale_center_x_, scale);
y = ScaleOperation::scale_coord(y, scale_center_y_, scale);
input_img->read_elem_sampled(x, y, sampler_, it.out);
const bool image_determined =
getInputSocket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
if (image_determined) {
rcti image_canvas = r_area;
rcti unused;
getInputSocket(X_INPUT_INDEX)->determine_canvas(image_canvas, unused);
getInputSocket(Y_INPUT_INDEX)->determine_canvas(image_canvas, unused);
getInputSocket(DEGREE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
getInputSocket(SCALE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
init_data();
if (invert_) {
/* Scale -> Rotate -> Translate. */
scale_canvas_ = image_canvas;
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
const Size2f max_scale_size = {
MAX2(BLI_rcti_size_x(&image_canvas), max_scale_canvas_size_.x),
MAX2(BLI_rcti_size_y(&image_canvas), max_scale_canvas_size_.y)};
ScaleOperation::clamp_area_size_max(scale_canvas_, max_scale_size);
RotateOperation::get_rotation_canvas(
scale_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
translate_canvas_ = rotate_canvas_;
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
r_area = translate_canvas_;
}
else {
/* Translate -> Rotate -> Scale. */
translate_canvas_ = image_canvas;
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
RotateOperation::get_rotation_canvas(
translate_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
scale_canvas_ = rotate_canvas_;
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
const Size2f max_scale_size = {
MAX2(BLI_rcti_size_x(&rotate_canvas_), max_scale_canvas_size_.x),
MAX2(BLI_rcti_size_y(&rotate_canvas_), max_scale_canvas_size_.y)};
ScaleOperation::clamp_area_size_max(scale_canvas_, max_scale_size);
r_area = scale_canvas_;
}
}
}
/** Translate -> Rotate -> Scale. */
void TransformOperation::transform(BuffersIterator<float> &it, const MemoryBuffer *input_img)
{
float rotate_center_x, rotate_center_y;
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
float rotate_offset_x, rotate_offset_y;
RotateOperation::get_rotation_offset(
translate_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
const float scale_center_x = BLI_rcti_size_x(&rotate_canvas_) / 2.0f;
const float scale_center_y = BLI_rcti_size_y(&rotate_canvas_) / 2.0f;
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(rotate_canvas_, scale_canvas_, scale_offset_x, scale_offset_y);
for (; !it.is_end(); ++it) {
float x = ScaleOperation::scale_coord_inverted(it.x + scale_offset_x, scale_center_x, scale_);
float y = ScaleOperation::scale_coord_inverted(it.y + scale_offset_y, scale_center_y, scale_);
x = rotate_offset_x + x;
y = rotate_offset_y + y;
RotateOperation::rotate_coords(
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
input_img->read_elem_sampled(x - translate_x_, y - translate_y_, sampler_, it.out);
}
}
/** Scale -> Rotate -> Translate. */
void TransformOperation::transform_inverted(BuffersIterator<float> &it,
const MemoryBuffer *input_img)
{
const rcti &image_canvas = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas();
const float scale_center_x = BLI_rcti_size_x(&image_canvas) / 2.0f - translate_x_;
const float scale_center_y = BLI_rcti_size_y(&image_canvas) / 2.0f - translate_y_;
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(image_canvas, scale_canvas_, scale_offset_x, scale_offset_y);
float rotate_center_x, rotate_center_y;
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
rotate_center_x -= translate_x_;
rotate_center_y -= translate_y_;
float rotate_offset_x, rotate_offset_y;
RotateOperation::get_rotation_offset(
scale_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
for (; !it.is_end(); ++it) {
const float scale = *it.in(0);
float x = ScaleOperation::scale_coord(it.x, scale_center_x_, scale);
float y = ScaleOperation::scale_coord(it.y, scale_center_y_, scale);
float x = rotate_offset_x + (it.x - translate_x_);
float y = rotate_offset_y + (it.y - translate_y_);
RotateOperation::rotate_coords(
x, y, rotate_center_x_, rotate_center_y_, rotate_sine_, rotate_cosine_);
x -= translate_x_;
y -= translate_y_;
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
x = ScaleOperation::scale_coord_inverted(x + scale_offset_x, scale_center_x, scale_);
y = ScaleOperation::scale_coord_inverted(y + scale_offset_y, scale_center_y, scale_);
input_img->read_elem_sampled(x, y, sampler_, it.out);
}
}