bpy/rna api class feature

- python defined classes will be used when available (otherwise automaically generated metaclasses are made as before)
- use properties rather then functions for python defined rna class's
- call the classes getattr AFTER doing an RNA lookup, avoids setting and clearing exceptions for most attribute lookups, tested UI scripts are ~25% faster.
- extending rna py classes this way is a nicer alternative to modifying the generated metaclasses in place.

Example class

--- snip
class Object(bpy.types.ID):

    def _get_children(self):
        return [child for child in bpy.data.objects if child.parent == self]

    children = property(_get_children)
--- snip

The C initialization function looks in bpy_types.py for classes matching RNA structure names, using them when available.
This means all objects in python will be instances of these classes.
Python properties/funcs defined in ID py class will also be available for subclasses for eg. (Group Mesh etc)
This commit is contained in:
2009-11-08 01:13:19 +00:00
parent 30c4c4599d
commit fac2ca1c7c
9 changed files with 202 additions and 170 deletions

View File

@@ -1,72 +0,0 @@
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####
def ord_ind(i1,i2):
if i1<i2: return i1,i2
return i2,i1
def edge_key(ed):
v1, v2 = tuple(ed.verts)
return ord_ind(v1, v2)
def face_edge_keys(face):
verts = tuple(face.verts)
if len(verts)==3:
return ord_ind(verts[0], verts[1]), ord_ind(verts[1], verts[2]), ord_ind(verts[2], verts[0])
return ord_ind(verts[0], verts[1]), ord_ind(verts[1], verts[2]), ord_ind(verts[2], verts[3]), ord_ind(verts[3], verts[0])
def mesh_edge_keys(mesh):
return [edge_key for face in mesh.faces for edge_key in face.edge_keys()]
def mesh_edge_face_count_dict(mesh, face_edge_keys=None):
# Optional speedup
if face_edge_keys==None:
face_edge_keys = [face.edge_keys() for face in face_list]
face_edge_count = {}
for face_keys in face_edge_keys:
for key in face_keys:
try:
face_edge_count[key] += 1
except:
face_edge_count[key] = 1
return face_edge_count
def mesh_edge_face_count(mesh, face_edge_keys=None):
edge_face_count_dict = mesh.edge_face_count_dict(face_edge_keys)
return [edge_face_count_dict.get(ed.key(), 0) for ed in mesh.edges]
import bpy
# * Edge *
class_obj = bpy.types.MeshEdge
class_obj.key = edge_key
# * Face *
class_obj = bpy.types.MeshFace
class_obj.edge_keys = face_edge_keys
# * Mesh *
class_obj = bpy.types.Mesh
class_obj.edge_keys = mesh_edge_keys
class_obj.edge_face_count = mesh_edge_face_count
class_obj.edge_face_count_dict = mesh_edge_face_count_dict