py api file rename

- prefix mathutils api.
- 2 blf.c files (annoying for debugging)
- py api docs ignore keying sets as with operators.
This commit is contained in:
2010-04-11 12:05:27 +00:00
parent 4c5fe03c9f
commit fe9a22a018
22 changed files with 23 additions and 21 deletions

View File

@@ -0,0 +1,721 @@
/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/* Note: Changes to Mathutils since 2.4x
* use radians rather then degrees
* - Mathutils.MidpointVecs --> vector.lerp(other, fac)
* - Mathutils.AngleBetweenVecs --> vector.angle(other)
* - Mathutils.ProjectVecs --> vector.project(other)
* - Mathutils.DifferenceQuats --> quat.difference(other)
* - Mathutils.Slerp --> quat.slerp(other, fac)
* - Mathutils.Rand: removed, use pythons random module
* - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
* - Matrix.scalePart --> Matrix.scale_part
* - Matrix.translationPart --> Matrix.translation_part
* - Matrix.rotationPart --> Matrix.rotation_part
* - toMatrix --> to_matrix
* - toEuler --> to_euler
* - toQuat --> to_quat
* - Vector.toTrackQuat --> Vector.to_track_quat
*
* Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
*/
#include "mathutils.h"
#include "BLI_math.h"
//-------------------------DOC STRINGS ---------------------------
static char M_Mathutils_doc[] =
"This module provides access to matrices, eulers, quaternions and vectors.";
//-----------------------------METHODS----------------------------
//-----------------quat_rotation (internal)-----------
//This function multiplies a vector/point * quat or vice versa
//to rotate the point/vector by the quaternion
//arguments should all be 3D
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
{
float rot[3];
QuaternionObject *quat = NULL;
VectorObject *vec = NULL;
if(QuaternionObject_Check(arg1)){
quat = (QuaternionObject*)arg1;
if(!BaseMath_ReadCallback(quat))
return NULL;
if(VectorObject_Check(arg2)){
vec = (VectorObject*)arg2;
if(!BaseMath_ReadCallback(vec))
return NULL;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return newVectorObject(rot, 3, Py_NEW, NULL);
}
}else if(VectorObject_Check(arg1)){
vec = (VectorObject*)arg1;
if(!BaseMath_ReadCallback(vec))
return NULL;
if(QuaternionObject_Check(arg2)){
quat = (QuaternionObject*)arg2;
if(!BaseMath_ReadCallback(quat))
return NULL;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return newVectorObject(rot, 3, Py_NEW, NULL);
}
}
PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
return NULL;
}
//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------Mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_RotationMatrix_doc[] =
".. function:: RotationMatrix(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_TranslationMatrix_doc[] =
".. function:: TranslationMatrix(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
}
//----------------------------------Mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_ScaleMatrix_doc[] =
".. function:: ScaleMatrix(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char M_Mathutils_OrthoProjectionMatrix_doc[] =
".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
static char M_Mathutils_ShearMatrix_doc[] =
".. function:: ShearMatrix(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
}
/* Utility functions */
// LomontRRDCompare4, Ever Faster Float Comparisons by Randy Dillon
#define SIGNMASK(i) (-(int)(((unsigned int)(i))>>31))
int EXPP_FloatsAreEqual(float af, float bf, int maxDiff)
{ // solid, fast routine across all platforms
// with constant time behavior
int ai = *(int *)(&af);
int bi = *(int *)(&bf);
int test = SIGNMASK(ai^bi);
int diff, v1, v2;
assert((0 == test) || (0xFFFFFFFF == test));
diff = (ai ^ (test & 0x7fffffff)) - bi;
v1 = maxDiff + diff;
v2 = maxDiff - diff;
return (v1|v2) >= 0;
}
/*---------------------- EXPP_VectorsAreEqual -------------------------
Builds on EXPP_FloatsAreEqual to test vectors */
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
{
int x;
for (x=0; x< size; x++){
if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
return 0;
}
return 1;
}
/* Mathutils Callbacks */
/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
int Mathutils_RegisterCallback(Mathutils_Callback *cb)
{
int i;
/* find the first free slot */
for(i= 0; mathutils_callbacks[i]; i++) {
if(mathutils_callbacks[i]==cb) /* alredy registered? */
return i;
}
mathutils_callbacks[i] = cb;
return i;
}
/* use macros to check for NULL */
int _BaseMathObject_ReadCallback(BaseMathObject *self)
{
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
if(cb->get(self->cb_user, self->cb_subtype, self->data))
return 1;
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
return 0;
}
int _BaseMathObject_WriteCallback(BaseMathObject *self)
{
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
if(cb->set(self->cb_user, self->cb_subtype, self->data))
return 1;
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
return 0;
}
int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
{
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
return 1;
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
return 0;
}
int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
{
Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
return 1;
PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
return 0;
}
/* BaseMathObject generic functions for all mathutils types */
char BaseMathObject_Owner_doc[] = "The item this is wrapping or None (readonly).";
PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
{
PyObject *ret= self->cb_user ? self->cb_user : Py_None;
Py_INCREF(ret);
return ret;
}
char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
{
return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
}
void BaseMathObject_dealloc(BaseMathObject * self)
{
/* only free non wrapped */
if(self->wrapped != Py_WRAP)
PyMem_Free(self->data);
Py_XDECREF(self->cb_user);
Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
}
/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef M_Mathutils_methods[] = {
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef M_Mathutils_module_def = {
PyModuleDef_HEAD_INIT,
"Mathutils", /* m_name */
M_Mathutils_doc, /* m_doc */
0, /* m_size */
M_Mathutils_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
PyObject *Mathutils_Init(void)
{
PyObject *submodule;
if( PyType_Ready( &vector_Type ) < 0 )
return NULL;
if( PyType_Ready( &matrix_Type ) < 0 )
return NULL;
if( PyType_Ready( &euler_Type ) < 0 )
return NULL;
if( PyType_Ready( &quaternion_Type ) < 0 )
return NULL;
submodule = PyModule_Create(&M_Mathutils_module_def);
PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
/* each type has its own new() function */
PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
return (submodule);
}