Since internal links are only runtime data, we have the flexibility to
allocating every link individually. Instead we can store links directly
in the node runtime vector. This allows avoiding many small allocations
when copying and changing node trees.
In the future we could use a smaller type like a pair of sockets
instead of `bNodeLink` to save memory.
Differential Revision: https://developer.blender.org/D16960
Previously, the code tried to keep node groups working even if some of
their input/output sockets had undefined type. This caused some
complexity with no benefit because not all places outside of this file
would handle the case correctly. Now node groups with undefined
interface sockets are disabled and have to be fixed manually before
they work again.
Undefined interface sockets are mostly caused by invalid Python
API usage and incomplete forward compatibility (e.g. when newer
versions introduce new socket types that the older version does
not know).
Add `bNode::index()` to allow accessing node indices directly without
manually de-referencing the runtime struct. Also adds some asserts to
make sure the access is valid and to check the nodes runtime vector.
Eagerly maintain the node's index in the tree so it can be accessed
without relying on the topology cache.
Differential Revision: https://developer.blender.org/D16683
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.
Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.
I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.
Differential Revision: https://developer.blender.org/D15775
This allows for optimizations because one does not have to iterate
over all nodes anymore to find all nodes within a frame.
Differential Revision: https://developer.blender.org/D16106
This was essentially a use-after-free issue. When a geometry nodes
group changes it has to be preprocessed again before it can be evaluated.
This part was working, the issue was that parent node groups have to be
preprocessed as well, which was missing. The lazy-function graph cached
on the parent node group was still referencing data that was freed when
the child group changed.
Now the depsgraph makes sure that all relevant geometry node groups are
preprocessed again after a change.
This issue was found by Simon Thommes.
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.
For more details see T98492.
There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
system but with different goals. Instead of optimizing throughput for highly
parallelizable work, this system is designed to compute only the data that is actually
necessary. What data is necessary can be determined dynamically during evaluation.
Many lazy-functions can be composed in a graph to form a new lazy-function, which can
again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
no longer inlined into their parents.
Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.
Differential Revision: https://developer.blender.org/D15914
The purpose of `NodeTreeRef` was to speed up various queries on a read-only
`bNodeTree`. Not that we have runtime data in nodes and sockets, we can also
store the result of some queries there. This has some benefits:
* No need for a read-only separate node tree data structure which increased
complexity.
* Makes it easier to reuse cached queries in more parts of Blender that can
benefit from it.
A downside is that we loose some type safety that we got by having different
types for input and output sockets, as well as internal and non-internal links.
This patch also refactors `DerivedNodeTree` so that it does not use
`NodeTreeRef` anymore, but uses `bNodeTree` directly instead.
To provide a convenient API (that is also close to what `NodeTreeRef` has), a
new approach is implemented: `bNodeTree`, `bNode`, `bNodeSocket` and `bNodeLink`
now have C++ methods declared in `DNA_node_types.h` which are implemented in
`BKE_node_runtime.hh`. To make this work, `makesdna` now skips c++ sections when
parsing dna header files.
No user visible changes are expected.
Differential Revision: https://developer.blender.org/D15491