The main change is returning a socket pointer instead of using two
return arguments. Also use the topology cache instead of linked lists,
references over pointers, and slightly adjust whitespace.
Add `bNode::index()` to allow accessing node indices directly without
manually de-referencing the runtime struct. Also adds some asserts to
make sure the access is valid and to check the nodes runtime vector.
Eagerly maintain the node's index in the tree so it can be accessed
without relying on the topology cache.
Differential Revision: https://developer.blender.org/D16683
In a few places, nodes were added without updating the Identifiers and
vector. In other places nodes we removed without removing from and
rebuilding the vector. This is solved in a few ways. First I exposed
a function to rebuild the vector from scratch, and added unique ID
finding to a few places.
The changes to node group building and separating are more involved,
mostly because it was hard to see the correct behavior without some
refactoring. Now `VectorSet` is used to store nodes involved in the
operation. Some things are handled more simply with the topology
cache and by passing a span of nodes.
The "Activate Same Type Next/Prev" and "Find Node" operators pan
the view to the newly selected node if it's outside of the view. This
simplifies that check and improves it in the case where the node
is only partially visible-- now it pans in while it didn't before.
The previous code was quadratic; it looped over every link for every
node. For one large node tree I tested the operator took 20ms. On the
same node tree it now takes less than 1ms.
The change replaces the current building of the "dependency list"
on every call with a use of the topology cache from 25e307d725.
* This patch just moves runtime data to the runtime struct to cleanup
the dna struct. Arguably, some of this data should not even be there
because it's very use case specific. This can be cleaned up separately.
* `miniwidth` was removed completely, because it was not used anywhere.
The corresponding rna property `width_hidden` is kept to avoid
script breakage, but does not do anything (e.g. node wrangler sets it).
* Since rna is in C, some helper functions where added to access the
C++ runtime data from rna.
* This size of `bNode` decreases from 432 to 368 bytes.
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.
**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
its active or not.
**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
When pinned, the spreadsheet still references the viewer node even
when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
the active viewer.
**Attribute**
* When a field is linked to the second input of the viewer node it is
displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
automatically. This does not work in all cases. It falls back to the
face corner domain on meshes and the point domain on curves. When
necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.
**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
by disabling the "Viewer Node" option in the "View" menu.
**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
attribute.
* The ground truth for the active viewer node is stored in the workspace
now. Node editors, spreadsheets and viewports retrieve the active
viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
the viewed geometry of the corresponding object is part of the iterator
instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
"preferred domain" for every field input. If there is not exactly one
preferred domain, the fallback is used.
Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
the values might have to be normalized or some should be drawn as arrays.
For now, we encourage users to build node groups that generate appropriate
viewer-geometry. We might include some of that functionality in future versions.
Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
nvidia gpus, to be investigated.
Differential Revision: https://developer.blender.org/D15954
It's easier to keep track of state in these algorithms if it's stored in
a central place like a set. Plus, using flags requires clearing them
beforehand. For the selected linked operators, using the topology
cache means we don't have to iterate over all links.
The location of a reroute node and its sockets should be the same,
only stored in different coordinate spaces. Because the node's location
is the ground truth, use that for finding whether the mouse is hovering.
Regression caused by [0] which changed node selection to use
PRESS for selection and CLICK_DRAG to transform the selection.
This conflicted with Alt-LMB which would select the node then
pass-though to node.background_sample, preventing the drag event
from being activated.
Resolve by only activating background-sample when the cursor
isn't over a node or socket.
[0]: 4c3e91e5f5
Use the same method for node selection and dragging that is used
in the 3D viewport and UV editor. Instead of relying on a modal
operator - use the keymap to handle click/drag events.
Details:
Failure to transform unselected nodes was caused by [0] & [1] however
detecting drag relied on specific behavior which I don't think we should
be depending on.
This error happened when selection was defined both in the key-map for
the tool and for the node-editor.
- The left mouse button would activate selection in both the tool
and "Node Editor" keymap.
- The first selection would return `FINISHED | PASS_THROUGH` when
selecting a previously unselected node.
- The same PRESS would trigger a second selection would return
`RUNNING_MODAL | PASS_THROUGH`,
(starting a NODE_OT_select as a modal operator).
- In 3.1 (with tweak events) the modal operator would then exit and
fall-back to the tweak event which would transform the selected
nodes.
- In 3.2 (as of [0]) the PRESS that starts the modal operator is
considered "handled" and prevents drag event from being detected.
The correct behavior in this case isn't obvious:
If a modal operator starts on pressing a button, using that same the
release to generate drag/click events is disputable.
Even in the case or 3.1 it was inconsistent as tweak events were
generated but click events weren't.
Note: after investigating this bug it turns out a similar issue already
existed in 2.91 and all releases afterwards. While the bug is more
obscure, it's also caused by the tweak event being interrupted as
described here, this commit resolves T81824 as well.
[0]: 4d0f846b93
[1]: 4986f71848
Reviewed By: Severin
Ref D14499
This avoids transform jumping which is a problem when tweaking values a
small amount. A fix for T40549 was made box-select used the location
when the key was pressed.
While it's important for box-select or any operator where it's expected
the drag-start location is used, this is only needed in some cases.
Since the event stores the click location and the current location,
no longer overwrite the events real location. Operators that depend on
using the drag-start can use this location if they need.
In some cases the region relative cursor location (Event.mval) now needs
to be calculated based on the click location.
- Added `WM_event_drag_start_mval` for convenient access to the region
relative drag-start location (for drag events).
- Added `WM_event_drag_start_xy` for window relative coordinates.
- Added Python property Event.mouse_prev_click_x/y
Resolves T93599.
Reviewed By: Severin
Ref D14213
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
Previously, node selection made no distinction between a frame node and
other nodes. So a frame node would be selected by their whole rect or
center (depending on box/lasso/circle select). As a consequence of this,
box and lasso could not pratically be started inside a frame node (with
the intention to select a subset of contained child nodes) because the
frame would be selected immediately and tweak-transforming started.
Circle selecting would always contain the frame node as well (making
transforming a subset of nodes without also transforming the whole frame
impossible).
Now change selection behavior so that for all selection modes only the
border [the margin area that is automatically added around all nodes,
see note below] of a frame node is considered in selection. This makes
for a much more intuitive experience when arranging nodes inside frames.
note: to make the area of interest for selection/moving more obvious,
the cursor changes when hovering over (as is done for resizing).
note: this also makes the resize margin consistent with other nodes.
note: this also fixes right resize border (was exclusive instead of
inclusive as every other border)
Also fixes T46540.
This commit moves code in all node editor files to the
`blender::ed::space_node` namespace, except for C API
functions defined in `ED_node.h`, which can only be moved
once all areas calling them are moved to C++.
The change is fairly straightforward, I just moved a couple
of "ED_" code blocks around to make the namespace more
contiguous, and there's the method for adding a pointer to
a struct in a C++ namespace in DNA.
Differential Revision: https://developer.blender.org/D13871
These operations (sorting and selecting all nodes) should generally
be handled by the node editor and not outside code. They were not
called outside of the node editor, so they can be moved to the editor's
`intern` header.
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others we
currently don't have (uintX, intX). All these variations were asking
for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
let down. Most clases are incomplete, out of sync with each others with
different codestyles, and some functions that should be static are not
(i.e: float3::reflect()).
Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
can be restricted to certain types. Also template specialization let us
define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
the same.
Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
caused by the vector class itself (since the operations are quite trivial)
but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
instance, one can't call len_squared_v3v3 in math::length_squared() and
call it a day.
- Type cast does not work with the template version of the math:: vector
functions. Meaning you need to manually cast float * and (float *)[3] to
float3 for the function calls.
i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
float3::dot(v1.normalized(), v2.normalized())
becoming
math::dot(math::normalize(v1), math::normalize(v2))
But I propose, when appropriate, to use
using namespace blender::math; on function local or file scope to
increase readability. dot(normalize(v1), normalize(v2))
Consideration:
- Include back .length() method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement.
It felt like too much for what we need and would be difficult to
extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
But according to @Jacques Lucke (JacquesLucke) it is not a real problem
for now.
I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: http://developer.blender.org/D13791
This builds off of rBf951aa063f7, adding a weight parameter which can
be used to change the order of items when they have the same match
score. In the future, if string searching gets a C++ API, we could
use an optional parameter for the weight, since it is not used yet.
This will be used for the node link drag search menu (D8286).
Differential Revision: https://developer.blender.org/D13559
Currently there are a few callbacks on `bNodeType` that do the same
thing for every node type except reroutes and frame nodes. Having a
callback for basic things complicates code and makes it harder to
understand, and reroutes and frames are special cases in larger way.
Arguably frame nodes shouldn't even be drawn like regular nodes,
given that it adds a case of O(N^2) looping through all nodes.
"Unrolling" the callbacks makes it easier to see what's happening,
and therefore easier to optimize.
Differential Revision: https://developer.blender.org/D13463
This helps to tell when a pointer is expected to be null, and avoid
overly verbose code when dereferencing. This commit also includes
a few other cleanups in this area:
- Use const in a few places
- Use `float2` instead of `float[2]`
- Remove some unnecessary includes and old code
The change can be continued further in the future.