Implements #102359.
Split the `MLoop` struct into two separate integer arrays called
`corner_verts` and `corner_edges`, referring to the vertex each corner
is attached to and the next edge around the face at each corner. These
arrays can be sliced to give access to the edges or vertices in a face.
Then they are often referred to as "poly_verts" or "poly_edges".
The main benefits are halving the necessary memory bandwidth when only
one array is used and simplifications from using regular integer indices
instead of a special-purpose struct.
The commit also starts a renaming from "loop" to "corner" in mesh code.
Like the other mesh struct of array refactors, forward compatibility is
kept by writing files with the older format. This will be done until 4.0
to ease the transition process.
Looking at a small portion of the patch should give a good impression
for the rest of the changes. I tried to make the changes as small as
possible so it's easy to tell the correctness from the diff. Though I
found Blender developers have been very inventive over the last decade
when finding different ways to loop over the corners in a face.
For performance, nearly every piece of code that deals with `Mesh` is
slightly impacted. Any algorithm that is memory bottle-necked should
see an improvement. For example, here is a comparison of interpolating
a vertex float attribute to face corners (Ryzen 3700x):
**Before** (Average: 3.7 ms, Min: 3.4 ms)
```
threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) {
for (const int64_t i : range) {
dst[i] = src[loops[i].v];
}
});
```
**After** (Average: 2.9 ms, Min: 2.6 ms)
```
array_utils::gather(src, corner_verts, dst);
```
That's an improvement of 28% to the average timings, and it's also a
simplification, since an index-based routine can be used instead.
For more examples using the new arrays, see the design task.
Pull Request: blender/blender#104424
The Cycles light linking branch is using the tree view UI but it seemed
to use the "wrong" layout. It wasn't clear that the layout has to be
reactivated before building the view.
Make it harder to use the API wrong now by requiring the layout as
argument, so the building can ensure it's active.
A renaming of UI scale factors from names that imply a relationship to
monitor DPI to names that imply that they simply change "scale"
Pull Request: blender/blender#105750
Refactoring mesh code, it has become clear that local cleanups and
simplifications are limited by the need to keep a C public API for
mesh functions. This change makes code more obvious and makes further
refactoring much easier.
- Add a new `BKE_mesh.hh` header for a C++ only mesh API
- Introduce a new `blender::bke::mesh` namespace, documented here:
https://wiki.blender.org/wiki/Source/Objects/Mesh#Namespaces
- Move some functions to the new namespace, cleaning up their arguments
- Move code to `Array` and `float3` where necessary to use the new API
- Define existing inline mesh data access functions to the new header
- Keep some C API functions where necessary because of RNA
- Move all C++ files to use the new header, which includes the old one
In the future it may make sense to split up `BKE_mesh.hh` more, but for
now keeping the same name as the existing header keeps things simple.
Pull Request: blender/blender#105416
Increase the buffer sizes used for `BLI_str_format_uint64_grouped` to
prevent overflow on strings representing numbers within the uint64
range. Also creates and uses defines for all the formatted string
buffer sizes.
Pull Request #105263
This reverts commit 19222627c6.
Something went wrong here, seems like this commit merged the main branch
into the release branch, which should never be done.
Straightforward port. I took the oportunity to remove some C vector
functions (ex: copy_v2_v2).
This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
Straightforward port. I took the oportunity to remove some C vector
functions (ex: `copy_v2_v2`).
This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
These warnings can reveal errors in logic, so quiet them by checking
if the features are enabled before using variables or by assigning
empty strings in some cases.
- Check CMAKE_THREAD_LIBS_INIT is set before use as CMake docs
note that this may be left unset if it's not needed.
- Remove BOOST/OPENVDB/VULKAN references when disable.
- Define INC_SYS even when empty.
- Remove PNG_INC from freetype (not defined anywhere).
Use the same `".selection"` attribute for both curve and point domains,
instead of a different name for each. The attribute can now have
either boolean or float type. Some tools create boolean selections.
Other tools create float selections. Some tools "upgrade" the attribute
from boolean to float.
Edit mode tools that create selections from scratch can create boolean
selections, but edit mode should generally be able to handle both
selection types. Sculpt mode should be able to read boolean selections,
but can also and write float values between zero and one.
Theoretically we could just always use floats to store selections,
but the type-agnosticism doesn't cost too much complexity given the
existing APIs for dealing with it, and being able to use booleans is
clearer in edit mode, and may allow future optimizations like more
efficient ways to store boolean attributes.
The attribute API is usually used directly for accessing the selection
attribute. We rely on implicit type conversion and domain interpolation
to simplify the rest of the code.
Differential Revision: https://developer.blender.org/D16057
This makes instance handling more consistent with all the other geometry
component types. For example, `MeshComponent` contains a `Mesh *` and
now `InstancesComponent` has a `Instances *`.
Differential Revision: https://developer.blender.org/D16137
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.
**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
its active or not.
**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
When pinned, the spreadsheet still references the viewer node even
when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
the active viewer.
**Attribute**
* When a field is linked to the second input of the viewer node it is
displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
automatically. This does not work in all cases. It falls back to the
face corner domain on meshes and the point domain on curves. When
necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.
**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
by disabling the "Viewer Node" option in the "View" menu.
**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
attribute.
* The ground truth for the active viewer node is stored in the workspace
now. Node editors, spreadsheets and viewports retrieve the active
viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
the viewed geometry of the corresponding object is part of the iterator
instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
"preferred domain" for every field input. If there is not exactly one
preferred domain, the fallback is used.
Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
the values might have to be normalized or some should be drawn as arrays.
For now, we encourage users to build node groups that generate appropriate
viewer-geometry. We might include some of that functionality in future versions.
Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
nvidia gpus, to be investigated.
Differential Revision: https://developer.blender.org/D15954
This adds callbacks to `SpaceType` to make each editor responsible to
manage their own .blend I/O, and moves relevant code from `screen.c`
to the editors files.
Differential Revision: D11069
Previously removing elements based on a predicate was a bit cumbersome,
especially for hash tables. Now there is a new `remove_if` method in some
data structures which is similar to `std::erase_if`. We could consider adding
`blender::erase_if` in the future to more closely mimic the standard library,
but for now this is using the api design of the surrounding code is used.
Correction of U.dpi to hold actual monitor DPI. Simplify font sizing by
omitting DPI as API argument, always using 72 internally.
See D15961 for more details.
Differential Revision: https://developer.blender.org/D15961
Reviewed by Campbell Barton
The BMesh selection virtual array was empty. There are a few different
places we could add an "empty" check here, but at the top of the
function is the simplest for now.
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.
For more details see T98492.
There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
system but with different goals. Instead of optimizing throughput for highly
parallelizable work, this system is designed to compute only the data that is actually
necessary. What data is necessary can be determined dynamically during evaluation.
Many lazy-functions can be composed in a graph to form a new lazy-function, which can
again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
no longer inlined into their parents.
Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.
Differential Revision: https://developer.blender.org/D15914
Replace `mesh_attributes`, `mesh_attributes_for_write` and the point
cloud versions with methods on the `Mesh` and `PointCloud` types.
This makes them friendlier to use and improves readability.
Differential Revision: https://developer.blender.org/D15907
Use `verts` instead of `vertices` and `polys` instead of `polygons`
in the API added in 05952aa94d. This aligns better with
existing naming where the shorter names are much more common.
The only real difference between `GPU_SHADER_2D_UNIFORM_COLOR` and
`GPU_SHADER_3D_UNIFORM_COLOR` is that in the vertex shader the 2D
version uses `vec4(pos, 0.0, 1.0)` and the 3D version uses
`vec4(pos, 1.0)`.
But VBOs with 2D attributes work perfectly in shaders that use 3D
attributes. Components not specified are filled with components from
`vec4(0.0, 0.0, 0.0, 1.0)`.
So there is no real benefit to having two different shader versions.
This will simplify porting shaders to python as it will not be
necessary to use a 3D and a 2D version of the shaders.
In python the new name for '2D_UNIFORM_COLOR'' and '3D_UNIFORM_COLOR'
is 'UNIFORM_COLOR', but the old names still work for backward
compatibility.
Differential Revision: https://developer.blender.org/D15836
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.
The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.
Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).
The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.
**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.
Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).
Differential Revision: https://developer.blender.org/D15488
Using the same `GeometryComponentFieldContext` for all situations,
even when only one geometry type is supported is misleading, and mixes
too many different abstraction levels into code that could be simpler.
With the attribute API moved out of geometry components recently,
the "component" system is just getting in the way here.
This commit adds specific field contexts for geometry types: meshes,
curves, point clouds, and instances. There are also separate field input
helper classes, to help reduce boilerplate for fields that only support
specific geometry types.
Another benefit of this change is that it separates geometry components
from fields, which makes it easier to see the purpose of the two concepts,
and how they relate.
Because we want to be able to evaluate a field on just `CurvesGeometry`
rather than the full `Curves` data-block, the generic "geometry context"
had to be changed to avoid using `GeometryComponent`, since there is
no corresponding geometry component type. The resulting void pointer
is ugly, but only turns up in three places in practice. When Apple clang
supports `std::variant`, that could be used instead.
Differential Revision: https://developer.blender.org/D15519
With libepoxy we can choose between EGL and GLX at runtime, as well as
dynamically open EGL and GLX libraries without linking to them.
This will make it possible to build with Wayland, EGL, GLVND support while
still running on systems that only have X11, GLX and libGL. It also paves
the way for headless rendering through EGL.
libepoxy is a new library dependency, and is included in the precompiled
libraries. GLEW is no longer a dependency, and WITH_SYSTEM_GLEW was removed.
Includes contributions by Brecht Van Lommel, Ray Molenkamp, Campbell Barton
and Sergey Sharybin.
Ref T76428
Differential Revision: https://developer.blender.org/D15291
The spreadsheet can retrieve the float selection using the same
utilities as curves sculpt brushes. Theoretically this can work in
original, evaluated, and viewer node modes, at least when the
sculpt selection attributes are able to be propagated.
Differential Revision: https://developer.blender.org/D15393
All callers passed `false` for this parameter, making it more confusing
than useful. If this functionality is needed again in the future, a separate
function should be added.
Differential Revision: https://developer.blender.org/D15401
No user visible changes expected.
Merges the tree row and grid tile button types, which were mostly doing
the same things. The idea is that there is a button type for
highlighting, as well as supporting general view item features (e.g.
renaming, drag/drop, etc.). So instead there is a view item button type
now. Also ports view item features like renaming, custom context menus,
drag controllers and drop controllers to `ui::AbstractViewItem` (the new
base class for all view items).
This should be quite an improvement because:
- Merges code that was duplicated over view items.
- Mentioned features (renaming, drag & drop, ...) are much easier to
implement in new view types now. Most of it comes "for free".
- Further features will immediately become availalbe to all views (e.g.
selection).
- Simplifies APIs, there don't have to be functions for individual view
item types anymore.
- View item classes are split and thus less overwhelming visually.
- View item buttons now share all code (drawing, handling, etc.)
- We're soon running out of available button types, this commit merges
two into one.
I was hoping I could do this in multiple smaller commits, but things
were quite intertwined so that would've taken quite some effort.
Currently, there are two attribute API. The first, defined in `BKE_attribute.h` is
accessible from RNA and C code. The second is implemented with `GeometryComponent`
and is only accessible in C++ code. The second is widely used, but only being
accessible through the `GeometrySet` API makes it awkward to use, and even impossible
for types that don't correspond directly to a geometry component like `CurvesGeometry`.
This patch adds a new attribute API, designed to replace the `GeometryComponent`
attribute API now, and to eventually replace or be the basis of the other one.
The basic idea is that there is an `AttributeAccessor` class that allows code to
interact with a set of attributes owned by some geometry. The accessor itself has
no ownership. `AttributeAccessor` is a simple type that can be passed around by
value. That makes it easy to return it from functions and to store it in containers.
For const-correctness, there is also a `MutableAttributeAccessor` that allows
changing individual and can add or remove attributes.
Currently, `AttributeAccessor` is composed of two pointers. The first is a pointer
to the owner of the attribute data. The second is a pointer to a struct with
function pointers, that is similar to a virtual function table. The functions
know how to access attributes on the owner.
The actual attribute access for geometries is still implemented with the `AttributeProvider`
pattern, which makes it easy to support different sources of attributes on a
geometry and simplifies dealing with built-in attributes.
There are different ways to get an attribute accessor for a geometry:
* `GeometryComponent.attributes()`
* `CurvesGeometry.attributes()`
* `bke::mesh_attributes(const Mesh &)`
* `bke::pointcloud_attributes(const PointCloud &)`
All of these also have a `_for_write` variant that returns a `MutabelAttributeAccessor`.
Differential Revision: https://developer.blender.org/D15280
The only real improvement is avoiding some reference counting,
but the main for the change is consistency. Also don't move a
StringRef, since that doesn't own any data anyway.
The spreadsheet ignored the component choice in the data set region
for curves and volume objects, and the original curves data-block wasn't
retrieved from the original object.
The compression as sRGB is mostly an implementation detail and showing the
integers does not make it clear what the actual values are that will be used
for computations in geometry nodes. This follows the general convention that
colors in Blender are displayed and edited in scene linear floats.
The raw sRGB bytes can still be viewed as a tooltip.
Ref T99205
Differential Revision: https://developer.blender.org/D15322