Make the functions more flexible and more generic by changing the curves
arguments to the curve offsets. This way, theoretically they could become
normal utility functions in the future. Also do a consistency pass over
the algorithms that generate new curves geometry for naming and
code ordering, and use of utility functions. The functions are really
quite similar, and it's much easier to tell this way.
The same logic from D17025 is used in other places in the curve code.
This patch uses the class for the evaluated point offsets and the Bezier
control point offsets. This helps to standardize the behavior and make
it easier to read.
Previously the Bezier control point offsets used a slightly different standard
where the first point was the first offset, just so they could have the same
size as the number of points. However two nodes used a helper function
to use the same `OffsetIndices` system, so switch to that there too.
That requires removing the subtraction by one to find the actual offset.
Also add const when accessing data arrays from curves, for consistency.
Differential Revision: https://developer.blender.org/D17038
This changes how we access the points that correspond to each curve in a `CurvesGeometry`.
Previously, `CurvesGeometry::points_for_curve(int curve_index) -> IndexRange`
was called for every curve in many loops. Now one has to call
`CurvesGeometry::points_by_curve() -> OffsetIndices` before the
loop and use the returned value inside the loop.
While this is a little bit more verbose in general, it has some benefits:
* Better standardization of how "offset indices" are used. The new data
structure can be used independent of curves.
* Allows for better data oriented design. Generally, we want to retrieve
all the arrays we need for a loop first and then do the processing.
Accessing the old `CurvesGeometry::points_for_curve(...)` did not follow
that design because it hid the underlying offset array.
* Makes it easier to pass the offsets to a function without having to
pass the entire `CurvesGeometry`.
* Can improve performance in theory due to one less memory access
because `this` does not have to be dereferenced every time.
This likely doesn't have a noticable impact in practice.
Differential Revision: https://developer.blender.org/D17025
Previously, the lifetimes of anonymous attributes were determined by
reference counts which were non-deterministic when multiple threads
are used. Now the lifetimes of anonymous attributes are handled
more explicitly and deterministically. This is a prerequisite for any kind
of caching, because caching the output of nodes that do things
non-deterministically and have "invisible inputs" (reference counts)
doesn't really work.
For more details for how deterministic lifetimes are achieved, see D16858.
No functional changes are expected. Small performance changes are expected
as well (within few percent, anything larger regressions should be reported as
bugs).
Differential Revision: https://developer.blender.org/D16858
a5e7657cee missed this call where clamped slicing is necessary.
The subdivision of a segment purposefully modifies the handle types of
the other side of the following control point, but that didn't work for
the final cyclic segment.
Also, single point cyclic Catmull Rom curves aren't evaluated properly.
Cyclic is meant to make no difference in that case. Now they correctly
evaluate to a single point.
This commit ports the fillet curves node to the new curves data-block,
and moves the fillet node implementation to the geometry module to help
separate the implementation from the node.
The changes are similar to the subdivide node or resample node. I've
resused common utilities where it makes sense, though some things like
the iteration over attributes can be generalized further. The node
is now multi-threaded per-curve and inside each curve, and some buffers
are reused per curve to avoid many allocations.
The code is more explicit now, and though there is more boilerplate to
pass around many spans, the more complex logic should be more readable.
Differential Revision: https://developer.blender.org/D15346
Previously, things like materials, symmetry, and selection options
stored on `Curves` weren't copied to the result in nodes like the
subdivide and resample nodes. Now they are, which fixes some
unexpected behavior and allows visualization of the sculpt mode
selection.
In the realize instances and join nodes the behavior is the same as
for meshes, the parameters are taken from the first (top) input.
I also refactored some functions to return a `CurvesGeometry` by-value,
which makes it the responsibility of the node to copy the parameters.
That should make the algorithms more reusable in other situations.
Differential Revision: https://developer.blender.org/D15408
Currently, there are two attribute API. The first, defined in `BKE_attribute.h` is
accessible from RNA and C code. The second is implemented with `GeometryComponent`
and is only accessible in C++ code. The second is widely used, but only being
accessible through the `GeometrySet` API makes it awkward to use, and even impossible
for types that don't correspond directly to a geometry component like `CurvesGeometry`.
This patch adds a new attribute API, designed to replace the `GeometryComponent`
attribute API now, and to eventually replace or be the basis of the other one.
The basic idea is that there is an `AttributeAccessor` class that allows code to
interact with a set of attributes owned by some geometry. The accessor itself has
no ownership. `AttributeAccessor` is a simple type that can be passed around by
value. That makes it easy to return it from functions and to store it in containers.
For const-correctness, there is also a `MutableAttributeAccessor` that allows
changing individual and can add or remove attributes.
Currently, `AttributeAccessor` is composed of two pointers. The first is a pointer
to the owner of the attribute data. The second is a pointer to a struct with
function pointers, that is similar to a virtual function table. The functions
know how to access attributes on the owner.
The actual attribute access for geometries is still implemented with the `AttributeProvider`
pattern, which makes it easy to support different sources of attributes on a
geometry and simplifies dealing with built-in attributes.
There are different ways to get an attribute accessor for a geometry:
* `GeometryComponent.attributes()`
* `CurvesGeometry.attributes()`
* `bke::mesh_attributes(const Mesh &)`
* `bke::pointcloud_attributes(const PointCloud &)`
All of these also have a `_for_write` variant that returns a `MutabelAttributeAccessor`.
Differential Revision: https://developer.blender.org/D15280
This commit moves the subdivide curve node implementation to the
geometry module, changes it to work on the new curves data-block,
and adds support for Catmull Rom curves. Internally I also added
support for a curve domain selection. That isn't used, but it's
nice to have the option anyway.
Users should notice better performance as well, since we can avoid
many small allocations, and there is no conversion to and from the
old curve type.
The code uses a similar structure to the resample node (60a6fbf5b5)
and the set type node (9e393fc2f1). The resample curves node can be
restructured to be more similar to this soon though.
Differential Revision: https://developer.blender.org/D15334