Previously the distance constraint actuator was always working
in local axis. The local flag allows to cast the ray along a
world axis (when the flag is not selected).
The N flag works differently in this case: only the object
orientation is changed to be parallel to the normal at the hit
point.
The linear velocity is now changed so that the speed along the
ray axis is null. This eliminates the need to compensate the
gravity when casting along the Z axis.
removed calc_curve_subdiv_radius(), curve radius is now calculated the same way as tilt.
Added radius interpolation menu matching tilt interpolation, needed to add "Ease" interpolation type to keep 2.47 curves looking the same.
- Added blending mode and factor option, so it's more clear and
controllable what happens with it. Also nice for crazy effects
of course!
- Preview render now shows preview for it too
On the todos:
- have this in World buttons (as well) for quicker sky setups
- review math of color clamping and scaling, this is definitely
not good... but a fix will make old files look very different.
(updated select group toolbox and header menu)
Added 2 copy property options - Replace All and Merge All, since there was no way to remove all properties, or set all objects game properties to be the same as the active objects.
Added set_ob_property(ob, prop) to property api.
bugfix in python api, copyAllPropertiesTo, it didnt check for duplicates or that it wasnt copying from/to the same object.
Commit patch #7788, allow to set the render step, so it's
possible make render every N frames only.
The step is change in Scene buttons (F10), below start and
end frame buttons.
Also add a command line options (-j), so it's possible to
overwrite the file step (useful for renderfarm).
[ Brecht, this work with OpenGL renders and simulated
the skipped frames, please double check ]
Three features that were on the main UI interface are now
moved to the Advanced Settings panel:
Margin, Actor (that becomes Sensor Actor) and No sleeping.
Sensor Actor is now a feature: it can be turned on and off
for all types of objects, and not just static objects.
Select the Sensor Actor button to make the object visible
to Near and Radar sensor.
The button is selected by default for dynamic objects
and unselected by default for static objects, to match
previous behavior.
- The cause was indeed corrupted particle settings which should have caused a deletion of the whole particle system. However the particle modifier was still left and that led to the crash.
- A "fix" because there's really no way of knowing what caused the corruption of the particle settings. If anyone else gets this and can recreate I'd love to get a .blend. Now that there shouldn't be a crash anymore the symptom will be a missing particle system after file load in an object that had a particle system before.
The Physics button controls the creation of a physics representation
of the object when starting the game. If the button is not selected,
the object is a pure graphical object with no physics representation
and all the other physics buttons are hidden.
Selecting this button gives access to the usual physics buttons.
The physics button is enabled by default to match previous Blender
behavior.
The margin parameter allows to control the collision margin from
the UI. Previously, this parameter was only accessible through
Python. By default, the collision margin is set to 0.0 on static
objects and 0.06 on dynamic objects.
To maintain compatibility with older games, the collision margin
is set to 0.06 on all objects when loading older blend file.
Note about the collision algorithms in Bullet 2.71
--------------------------------------------------
Bullet 2.71 handles the collision margin differently than Bullet 2.53
(the previous Bullet version in Blender). The collision margin is
now kept "inside" the object for box, sphere and cylinder bound
shapes. This means that two objects bound to any of these shape will
come in close contact when colliding.
The static mesh, convex hull and cone shapes still have their
collision margin "outside" the object, which leaves a space of 1
or 2 times the collision margin between objects.
The situation with Bullet 2.53 was more complicated, generally
leading to more space between objects, except for box-box collisions.
This means that running a old game under Bullet 2.71 may cause
visual problems, especially if the objects are small. You can fix
these problems by changing some visual aspect of the objects:
center, shape, size, position of children, etc.
* Fix issue with add transparency mode with blender materials.
* Possible fix at frontface flip in the game engine.
* Fix color buffering clearing for multiple viewports, it used
to clear as if there was one.
* Fix for zoom level in user defined viewports, it was based on
the full window before, now it is based on the viewport itself.
* For user defined viewports, always use Expose instead of
Letterbox with bars, the latter doesn't make sense then.
Grease Pencil is now available in the image editor. It is important to note that the strokes drawn WILL NOT become part of the image visible at the time.
Unfortunately, 'fancy' stroke drawing cannot be enabled for use with the 'Stick to View' setting here, as the scaling is wrong.
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:
* GLSL support in the viewport and game engine, enable in the game
menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.
* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
An extra texture slot shows up once the last slot is used.
* Memory limit for undo, not enabled by default yet because it
needs the .B.blend to be changed.
* Multiple undo for image painting.
* An offset for dupligroups, so not all objects in a group have to
be at the origin.
- For newtonian particles a "self effect" button in particle extras makes the particles be effected by themselves if a particle effector is defined for this system, currently this is a brute force method so things start getting slow with more than ~100 particles, but this will hopefully change in the future.
- Two new effector types: charge and a Lennard-Jones potential based force (inter-molecular forces for example).
-Charge is similar to spherical field except it changes behavior (attract/repulse) based on the effected particles charge field (negative/positive) like real particles with a charge.
-The Lennard-Jones field is a very short range force with a behavior determined by the sizes of the effector and effected particle. At a distance smaller than the combined sizes the field is very repulsive and after that distance it's attractive. It tries to keep the particles at an equilibrium distance from each other. Particles need to be at a close proximity to each other to be effected by this field at all.
- Particle systems can now have two effector fields (two slots in the fields panel). This allows to create particles which for example have both a charge and a Lennard-Jones potential.
get lost in reading libraries. The pointers were being remapped in the
expand stage, but not all objects were guaranteed to be linked in at that
point, so they got lost. Now it always does this in the lib linking stage
for both regular and library objects.
Flags control the behaviour and grouping of markers. At present, Ctrl+M places a marker with TMARK_EDITALL set for testing purposes.
I have also split the text area event handler into separate methods for marker handling and the existing text tools. This makes the events system much easier to follow as it was getting a little hairy.
=======================================
Alpha blending + sorting was revised, to fix bugs and get it
to work more predictable.
* A new per texture face "Sort" setting defines if the face
is alpha sorted or not, instead of abusing the "ZTransp"
setting as it did before.
* Existing files are converted to hopefully match the old
behavior as much as possible with a version patch.
* On new meshes the Sort flag is disabled by the default, to
avoid unexpected and hard to find slowdowns.
* Alpha sorting for faces was incredibly slow. Sorting faces
in a mesh with 600 faces lowered the framerate from 200 to
70 fps in my test.. the sorting there case goes about 15x
faster now, but it is still advised to use Clip Alpha if
possible instead of regular Alpha.
* There still various limitations in the alpha sorting code,
I've added some comments to the code about this.
Some docs at the bottom of the page:
http://www.blender.org/development/current-projects/changes-since-246/realtime-glsl-materials/
Merged some fixes from the apricot branch, most important
change is that tangents are now exactly the same as the rest
of Blender, instead of being computed in the game engine with a
different algorithm.
Also, the subversion was bumped to 1.
Based on user feedback, I've made some changes to the Grease Pencil UI (most notably in 'Time Editing' facilities).
* 'Edit Timing' button gone
* Pin button and '<Grease Pencil Data' string gone from Action Editor
* Action Editor in 'Grease Pencil' mode now displays all grease-pencil datablocks for current screen.
* AE: GP-Datablocks are drawn like 'groups', with an expand/collapse button to show/hide layers. Its name shows the type of space it comes from, and shows indicative status info (i.e. for 3d-view, it shows view-angle)
* Added refresh calls for action editor after editing relevant data.
I haven't tested all tools yet, but most should be stable.
Also, I've removed some unnecessary buttons, and added a few tooltips. There's also some experimental code to try to get clearer indication of 'active' layer.
Grease Pencil is a tool which allows you to draw freehand in some views, allowing you to annotate/scribble over the contents of that view in either 2d or 3d. This facilitates many easier communication and planning abilities.
To use, simply enable it from the View menu (choose 'Grease Pencil...' and click 'Use Grease Pencil'). Then, click+drag using the left-mouse button and the shift-key held to draw a stroke.
For more information, check the following page on the wiki:
http://wiki.blender.org/index.php/User:Aligorith/247_Grease_Pencil
This patch introduces a simple state engine system with the logic bricks. This system features full
backward compatibility, multiple active states, multiple state transitions, automatic disabling of
sensor and actuators, full GUI support and selective display of sensors and actuators.
Note: Python API is available but not documented yet. It will be added asap.
State internals
===============
The state system is object based. The current state mask is stored in the object as a 32 bit value;
each bit set in the mask is an active state. The controllers have a state mask too but only one bit
can be set: a controller belongs to a single state. The game engine will only execute controllers
that belong to active states. Sensors and actuators don't have a state mask but are effectively
attached to states via their links to the controllers. Sensors and actuators can be connected to more
than one state. When a controller becomes inactive because of a state change, its links to sensors
and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated,
i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated,
the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that
it can react as if the game just started when it gets reconnected to an active controller. For example,
an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more
controllers of a single state) will generate a pulse each time the state becomes active. This feature is
not available on all sensors, see the notes below.
GUI
===
This system system is fully configurable through the GUI: the object state mask is visible under the
object bar in the controller's colum as an array of buttons just like the 3D view layer mask.
Click on a state bit to only display the controllers of that state. You can select more than one state
with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object.
The Ini button sets the state mask back to the object default state. You can change the default state
of object by first selecting the desired state mask and storing using the menu under the State button.
If you define a default state mask, it will be loaded into the object state make when you load the blend
file or when you run the game under the blenderplayer. However, when you run the game under Blender,
the current selected state mask will be used as the startup state for the object. This allows you to test
specific state during the game design.
The controller display the state they belong to with a new button in the controller header. When you add
a new controller, it is added by default in the lowest enabled state. You can change the controller state
by clicking on the button and selecting another state. If more than one state is enabled in the object
state mask, controllers are grouped by state for more readibility.
The new Sta button in the sensor and actuator column header allows you to display only the sensors and
actuators that are linked to visible controllers.
A new state actuator is available to modify the state during the game. It defines a bit mask and
the operation to apply on the current object state mask:
Cpy: the bit mask is copied to the object state mask.
Add: the bits that set in the bit mask will be turned on in the object state mask.
Sub: the bits that set in the bit mask will be turned off in the object state mask.
Inv: the bits that set in the bit mask will be inverted in the objecyy state mask.
Notes
=====
- Although states have no name, a simply convention consists in using the name of the first controller
of the state as the state name. The GUI will support that convention by displaying as a hint the name
of the first controller of the state when you move the mouse over a state bit of the object state mask
or of the state actuator bit mask.
- Each object has a state mask and each object can have a state engine but if several objects are
part of a logical group, it is recommended to put the state engine only in the main object and to
link the controllers of that object to the sensors and actuators of the different objects.
- When loading an old blend file, the state mask of all objects and controllers are initialized to 1
so that all the controllers belong to this single state. This ensures backward compatibility with
existing game.
- When the state actuator is activated at the same time as other actuators, these actuators are
guaranteed to execute before being eventually disabled due to the state change. This is useful for
example to send a message or update a property at the time of changing the state.
- Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they
are acticated again, they will behave as follow:
* keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive
to new key press.
* collision sensor: objects already colliding won't be detected. Only new collisions are
detected.
* near and radar sensor: same as collision sensor.
Shape Action are now supported in the BGE. A new type of actuator "Shape Action" is available on mesh objects. It can be combined with Action actuator on parent armature. Only relative keys are supported. All the usual action options are available: type, blending, priority, Python API. Only actions with shape channels should be specified of course, otherwise the actuator has no effect. Shape action will still work after a mesh replacement provided that the new mesh has compatible shape keys.