Commit Graph

10 Commits

Author SHA1 Message Date
60d9de767d Cleanup: remove redundant forward declarations for structs 2023-01-18 18:41:13 +11:00
4d39b6b3f4 Geometry Nodes: skip logging socket values for invisible trees
Geometry nodes used to log all socket values during evaluation.
This allowed the user to hover over any socket (that was evaluated)
to see its last value. The problem is that in large (nested) node trees,
the number of sockets becomes huge, causing a lot of performance
and memory overhead (in extreme cases, more than 70% of the
total execution time).

This patch changes it so, that only socket values are logged that the
user is likely to investigate. The simple heuristic is that socket values
of the currently visible node tree are logged.

The downside is that when the user changes the visible node tree, it
won't have any logged values until it is reevaluated. I updated the
tooltip message for that case to be a bit more precise.
If user feedback suggests that this new behavior is too annoying, we
can always add a UI option to log all socket values again. That shouldn't
be done without an actual need though because it takes up UI space.

Differential Revision: https://developer.blender.org/D16884
2022-12-29 19:36:36 +01:00
c9b06505d8 Cleanup: Grammar in comments
"spend" is a verb, not a noun.
2022-12-28 20:39:14 -05:00
3176b113e4 Geometry Nodes: Reduce socket logging overhead
Use socket indices to keep track of logged values instead of their
identifiers. This decreases memory pressure when there are many
sockets. In cases with many cheap nodes, this can give a relatively
large improvement to overall performance. We observed a 15% increase
in a case with many math nodes and a larger increase in an experimental
softbody node setup. The log is invalidated when we add/remove/move
sockets anyway.
2022-12-28 20:37:16 -05:00
90ea1b7643 Nodes: Use persistent integer to identify to nodes
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.

Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.

I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.

Differential Revision: https://developer.blender.org/D15775
2022-12-01 15:08:12 -06:00
46c40d7fa1 Fix: Use after free in geometry node group logger
The name of the node group in the geometry nodes logger is created
in `GeoModifierLog::get_local_tree_logger`, where it references the
compute context. However, the compute context is a local variable
that doesn't live as long as the log. Therefore the log needs to own
the node group name.

Removing the ownership from `NodeGroupComputeContext` may be
possible as well, but seems less obviously correct. This can be a
temporary solution until we can completely avoid storing strings
in the logger (see D15775).

Fixes T101599
2022-10-06 11:58:11 -05:00
c55d38f00b Geometry Nodes: viewport preview
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.

**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
  makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
  is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
  its active or not.

**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
  When pinned, the spreadsheet still references the viewer node even
  when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
  the active viewer.

**Attribute**
* When a field is linked to the second input of the viewer node it is
  displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
  automatically. This does not work in all cases. It falls back to the
  face corner domain on meshes and the point domain on curves. When
  necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
  that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.

**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
  setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
  by disabling the "Viewer Node" option in the "View" menu.

**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
  is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
  field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
  attribute.
* The ground truth for the active viewer node is stored in the workspace
  now. Node editors, spreadsheets and viewports retrieve the active
  viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
  the viewed geometry of the corresponding object is part of the iterator
  instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
  to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
  existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
  "preferred domain" for every field input. If there is not exactly one
  preferred domain, the fallback is used.

Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
  added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
  the values might have to be normalized or some should be drawn as arrays.
  For now, we encourage users to build node groups that generate appropriate
  viewer-geometry. We might include some of that functionality in future versions.
  Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
  nvidia gpus, to be investigated.

Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
7549e0c5ae Geometry Nodes: use stringref instead of string in logger
This reduces logging overhead. The performance difference is only
significant when there are many fast nodes. In my test file with many
math nodes, the performance improved from 720ms to 630ms.
2022-09-17 12:08:57 +02:00
f78219c9a8 Cleanup: spelling in comments 2022-09-13 18:03:09 +10:00
4130f1e674 Geometry Nodes: new evaluation system
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.

For more details see T98492.

There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
  system but with different goals. Instead of optimizing throughput for highly
  parallelizable work, this system is designed to compute only the data that is actually
  necessary. What data is necessary can be determined dynamically during evaluation.
  Many lazy-functions can be composed in a graph to form a new lazy-function, which can
  again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
  To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
  no longer inlined into their parents.

Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.

Differential Revision: https://developer.blender.org/D15914
2022-09-13 08:44:32 +02:00