These should not have any effect on render results, except in some cases with
you have overlapping faces, where the noise seems to be slightly reduced.
There are some performance improvements, for simple scenes I wouldn't expect
more than 5-10% to be cut off the render time, for sintel scenes we got about
50% on average, that's with millions of polygons on intel quad cores. This
because memory access / cache misses were the main bottleneck for those scenes,
and the optimizations improve that.
Interal changes:
* Remove RE_raytrace.h, raytracer is now only used by render engine again.
* Split non-public parts rayobject.h into rayobject_internal.h, hopefully
makes it clearer how the API is used.
* Added rayintersection.h to contain some of the stuff from RE_raytrace.h
* Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes
normalized and sometimes not, confusing... now dir is always normalized
and dist contains the distance.
* Change VECCOPY and similar to BLI_math functions.
* Force inlining of auxiliary functions for ray-triangle/quad intersection,
helps a few percentages.
* Reorganize svbvh code so all the traversal functions are in one file
* Don't do test for root so that push_childs can be inlined
* Make shadow a template parameter so it doesn't need to be runtime checked
* Optimization in raytree building, was computing bounding boxes more often
than necessary.
* Leave out logf() factor in SAH, makes tree build quicker with no
noticeable influence on raytracing on performance?
* Set max childs to 4, simplifies traversal code a bit, but also seems
to help slightly in general.
* Store child pointers and child bb just as fixed arrays of size 4 in nodes,
nearly all nodes have this many children, so overall it actually reduces
memory usage a bit and avoids a pointer indirection.
* mingw almost compiles again cleanly, except for a linking error when linking blender http://www.pasteall.org/8297
* win64 should compile again too to a similar degree?
* silenced warnings about no newlines...
#define RE_RAYCOUNTER (/source/blender/render/extern/include/RE_raytrace.h)
*Some other small organization on code
(will be disable as this only matters for testing and developping)
if theres very few faces its not worth it to create a separated tree for beinng reused.
should speedup some particle renders.
This "fixes" a bug relationed with a arithmetic precision on instances and raytrace of very close objects
which usually happens on rendering (almost) overlapping alpha-enabled leafs/feathers
It creates a tree cut after knowing that a given point will pass on a BB.
This tree cut is used to accelarate the rays casted from a given BB, eliminating unnecessary BB tests from root till the tree cut.
*Added vbvh - Just a experimental tree type :)
Variable Way BVH - there is no hardcoded number of childs per each Tree Node
- idea is to optimize a tree to reduced the expected number of BB tests even after applying SAH (for that an hardcoded n-way is not enough)
- for now childs are stored on a linked list
Suposedly usefull for creating trees of objects (where objects have very diferent size-NumFaces and shape-BB)
Altought the implemented costs maybe not be very correct (for now), as i didnt cared about following a specific "corrected" model
point is that other structures like trees can then distiguish between other nodes or rayobject primitives
withouth needing any other variable.
(Note yet used but will reduce memory by a nice factor (linear to the number of primitives))
*Adapted octree to a more generic raytrace API
*ray shadow works (other untested stuff disabled atm)
On the scene tested the user-cpu time got from 1:24 to 1:19/20
probably because of removed callbacks or sligtly diferente memory usage