This solution involves adding a uniform to each fragment shader that is
used by gizmo drawing and use the framebuffer state to set this uniform
accordingly.
This solution can also be carried to external shaders (addons).
A single line of code would then be enough to fix the issue.
The only trickery here is the dummy define:
`#define srgb_to_framebuffer_space(a)`
This is in order to avoid breaking other DRW shaders that use the same
fragment shader code but do not need the tranformation.
Related to T74139
Reviewed By: brecht, campbellbarton
Differential Revision: https://developer.blender.org/D7261
Currently in fractal_noise functions, each subsequent octave doubles the
frequency and reduces the amplitude by half. This patch introduces Roughness
input to Noise and Wave nodes. This multiplier determines how quickly the
amplitudes of the subsequent octaves decrease.
Value of 0.5 will be the default, generating identical noise we had before.
Values above 0.5 will increase influence of each octave resulting in more
"rough" noise, most interesting pattern changes happen there. Values below
0.5 will result in more "smooth" noise.
Differential Revision: https://developer.blender.org/D7065
Stereoscopic viewport didn't support Color Manangement due recent
changes in the color management pipeline. In order to solve the issue we
will migrate the strereo rendering into the GPUViewport. This will share
some textures and reduce required GPU memory.
Reviewed By: fclem, dfelinto
Differential Revision: https://developer.blender.org/D6922
Only the volume drawing part is really finished and exposed to the user. Hair
plugs into the existing hair rendering code and is fairly straightforward. The
pointcloud drawing is a hack using overlays rather than Eevee and workbench.
The most tricky part for volume rendering is the case where each volume grid
has a different transform, which requires an additional matrix in the shader
and non-trivial logic in Eevee volume drawing. In the common case were all the
transforms match we don't use the additional per-grid matrix in the shader.
Ref T73201, T68981
Differential Revision: https://developer.blender.org/D6955
This patch is (almost) a complete rewrite of workbench engine.
The features remain unchanged but the code quality is greatly improved.
Hair shading is brighter but also more correct.
This also introduce the concept of `DRWShaderLibrary` to make a simple
include system inside the GLSL files.
Differential Revision: https://developer.blender.org/D7060
This has no user visible impact yet since smoke volumes only support a fixed
set of attributes, but will become important with the new volume object.
For GPU shader compilation, volume grids are now handled separately from
image textures. They are somewhere between a vertex attribute and an image
texture, basically an attribute that is stored as a texture.
Differential Revision: https://developer.blender.org/D6952
This is more in line with standard grids and means we don't have to make
many special exceptions in the upcoming change for arbitrary number of volume
grids support in Eevee.
The workbench shader was also changed to fix bugs where squared density was
used, and the smoke color would affect the density so that black smoke would
be invisible. This can change the look of smoke in workbench significantly.
When using the color grid when smoke has a constant color, the color grid
will no longer be premultiplied by the density. If the color is constant
we want to be able not to store a grid at all. This breaks one test for
Cycles and Eevee, but the setup in that test using a color without density
does not make sense. It suffers from artifacts since the unpremultiplied
color grid by itself will not have smooth boundaries.
Differential Revision: https://developer.blender.org/D6951
The current code allocates and transfers a lot of memory to the GPU,
but only a small portion of this memory is actually used.
In addition, the code calls many costly gl operations during the
caching process.
This commit significantly reduce the amount of memory by allocating
and transferring a flat array without pads to the GPU.
It also calls as little as possible the gl operations during the cache.
This code also simulate a billinear filter `GL_LINEAR` using a 1D texture.
**Average drawing time:**
|before:|0.00003184 sec
|now:|0.00001943 sec
|fac:|1.6385156675048407
**5 worst times:**
|before:|[0.001075, 0.001433, 0.002143, 0.002915, 0.003242]
|now:|[0.00094, 0.000993, 0.001502, 0.002284, 0.002328]
Differential Revision: https://developer.blender.org/D6886
This patch adds new render passes to EEVEE. These passes include:
* Emission
* Diffuse Light
* Diffuse Color
* Glossy Light
* Glossy Color
* Environment
* Volume Scattering
* Volume Transmission
* Bloom
* Shadow
With these passes it will be possible to use EEVEE effectively for
compositing. During development we kept a close eye on how to get similar
results compared to cycles render passes there are some differences that
are related to how EEVEE works. For EEVEE we combined the passes to
`Diffuse` and `Specular`. There are no transmittance or sss passes anymore.
Cycles will be changed accordingly.
Cycles volume transmittance is added to multiple surface col passes. For
EEVEE we left the volume transmittance as a separate pass.
Known Limitations
* All materials that use alpha blending will not be rendered in the render
passes. Other transparency modes are supported.
* More GPU memory is required to store the render passes. When rendering
a HD image with all render passes enabled at max extra 570MB GPU memory is
required.
Implementation Details
An overview of render passes have been described in
https://wiki.blender.org/wiki/Source/Render/EEVEE/RenderPasses
Future Developments
* In this implementation the materials are re-rendered for Diffuse/Glossy
and Emission passes. We could use multi target rendering to improve the
render speed.
* Other passes can be added later
* Don't render material based passes when only requesting AO or Shadow.
* Add more passes to the system. These could include Cryptomatte, AOV's, Vector,
ObjectID, MaterialID, UV.
Reviewed By: Clément Foucault
Differential Revision: https://developer.blender.org/D6331
This patch provides an optimisation for Ease (Smoothstep) setting in the color ramp node.
This optimisation exists already for Constant and Linear modes.
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D6880
This node provides the ability to rotate a vector around a `center` point using either `Axis Angle` , `Single Axis` or `Euler` methods.
Reviewed By: #cycles, brecht
Differential Revision: https://developer.blender.org/D3789
* Direction mode X, Y and Z to align with axes rather than diagonal or
spherical as previously. X is the new default, existing files will
use diagonal or spherical for compatibility.
* Phase offset to offset the wave along its direction, for purposes like
animation and distortion.
https://developer.blender.org/D6382
This adds some extra functions recently added to the float Maths Node.
Not all functions have been ported over in this patch.
Also:
+ Tidy up menu
+ Change node color to match other vector nodes, this helps distinguish vector and float nodes in the tree
+ Move shared OSL functions to new header node_math.h
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D6713
Apparently the compiled shader bump into some register limit and
the compiler instead of giving an error, does something incorrectly.
Differential Revision: https://developer.blender.org/D6759
Based on @fclem's suggestion in D6421, this commit implements support for
storing all tiles of a UDIM texture in a single 2D array texture on the GPU.
Previously, Eevee was binding one OpenGL texture per tile, quickly running
into hardware limits with nontrivial UDIM texture sets.
Workbench meanwhile had no UDIM support at all, as reusing the per-tile
approach would require splitting the mesh by tile as well as texture.
With this commit, both Workbench as well as Eevee now support huge numbers
of tiles, with the eventual limits being GPU memory and ultimately
GL_MAX_ARRAY_TEXTURE_LAYERS, which tends to be in the 1000s on modern GPUs.
Initially my plan was to have one array texture per unique size, but managing
the different textures and keeping everything consistent ended up being way
too complex.
Therefore, we now use a simpler version that allocates a texture that
is large enough to fit the largest tile and then packs all tiles into as many
layers as necessary.
As a result, each UDIM texture only binds two textures (one for the actual
images, one for metadata) regardless of how many tiles are used.
Note that this rolls back per-tile GPUTextures, meaning that we again have
per-Image GPUTextures like we did before the original UDIM commit,
but now with four instead of two types.
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D6456
The ratio for area stretching was packed into an unsigned int, but could
contain negative numbers. This flipped the negative numbers to high
positive numbers and rendered the wrong color in the stretching overlay.
I can remember during {T63755} I had to flip the sign to get the
correct result, but couldn't find out why that was needed. Now I know.
Reviewed By: fclem, mano-wii
Differential Revision: https://developer.blender.org/D6440
This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender.
With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser.
Therefore, code that is not yet aware of tiles will just access the default tile as usual.
The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9.
Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator.
The following features are supported so far:
- Automatic detection and loading of all tiles when opening the first tile (1001)
- Saving all tiles
- Adding and removing tiles
- Filling tiles with generated images
- Drawing all tiles in the Image Editor
- Viewing a tiled grid even if no image is selected
- Rendering tiled images in Eevee
- Rendering tiled images in Cycles (in SVM mode)
- Automatically skipping loading of unused tiles in Cycles
- 2D texture painting (also across tiles)
- 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders)
- Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID)
- Different resolutions between tiles
There still are some missing features that will be added later (see T72390):
- Workbench engine support
- Packing/Unpacking support
- Baking support
- Cycles OSL support
- many other Blender features that rely on images
Thanks to Brecht for the review and to all who tested the intermediate versions!
Differential Revision: https://developer.blender.org/D3509
Previously Noise and Wave texture nodes would use noise functions within a [0,1]
range for distortion effects. We either add or subtract noise from coordinates,
never do both at same time. This led to the texture drastically shifting on the
diagonal axis of a plane / cube. This behavior makes the Distortion input hard
to control or animate. Capabilities of driving it with other texture are also
limited, diagonal shifting is very apparent.
This was fixed by offsetting the noise function to a signed range and making it
zero-centered. This way noise is uniformly added and subtracted from coordinates.
Texture pattern sticks to main coordinates which makes it way easier to control.
This change is not strictly backwards compatible, there is versioning to ensure
the scale of the distortion remains similar, but the particular pattern can be
a little different.
Differential Revision: https://developer.blender.org/D6177
Modes: Linear interpolation (default), stepped linear, smoothstep and smootherstep.
This also includes an additional option for the **Clamp node** to switch between **Min Max** (default) and **Range** mode.
This was needed to allow clamping when **To Max** is less than **To Min**.
Reviewed By: JacquesLucke, brecht
Differential Revision: https://developer.blender.org/D5827
When creating shaders and using maths functions it is expected that Blender should match functions in other DCC applications, game engines and shading languages such as GLSL and OSL.
This patch adds missing functions to the Blender maths node.
Ideally, it would be nice to have these functions available to vectors too but that is not part of this patch.
This patch adds the following functions trunc, snap, wrap, compare, pingpong, sign, radians, degrees, cosh, sinh, tanh, exp, smoothmin and inversesqrt.
Sign function is based on GLSL and OSL functions and returns zero when x == 0.
Differential Revision: https://developer.blender.org/D5957
This is the unification of all overlays into one overlay engine as described in T65347.
I went over all the code making it more future proof with less hacks and removing old / not relevent parts.
Goals / Acheivements:
- Remove internal shader usage (only drw shaders)
- Remove viewportSize and viewportSizeInv and put them in gloabl ubo
- Fixed some drawing issues: Missing probe option and Missing Alt+B clipping of some shader
- Remove old (legacy) shaders dependancy (not using view UBO).
- Less shader variation (less compilation time at first load and less patching needed for vulkan)
- removed some geom shaders when I could
- Remove static e_data (except shaders storage where it is OK)
- Clear the way to fix some anoying limitations (dithered transparency, background image compositing etc...)
- Wireframe drawing now uses the same batching capabilities as workbench & eevee (indirect drawing).
- Reduced complexity, removed ~3000 Lines of code in draw (also removed a lot of unused shader in GPU).
- Post AA to avoid complexity and cost of MSAA.
Remaining issues:
- ~~Armature edits, overlay toggles, (... others?) are not refreshing viewport after AA is complete~~
- FXAA is not the best for wires, maybe investigate SMAA
- Maybe do something more temporally stable for AA.
- ~~Paint overlays are not working with AA.~~
- ~~infront objects are difficult to select.~~
- ~~the infront wires sometimes goes through they solid counterpart (missing clear maybe?) (toggle overlays on-off when using infront+wireframe overlay in solid shading)~~
Note: I made some decision to change slightly the appearance of some objects to simplify their drawing. Namely the empty arrows end (which is now hollow/wire) and distance points of the cameras/spots being done by lines.
Reviewed By: jbakker
Differential Revision: https://developer.blender.org/D6296
The Random Per Island attribute is a random float associated with each
connected component (island) of the mesh. It is particularly useful
when artists want to add variations to meshes composed of separate
units. Like tree leaves created using particle systems, wood planks
created using array modifiers, or abstract splines created using AN.
Reviewed By: Sergey Sharybin, Jacques Lucke
Differential Revision: https://developer.blender.org/D6154
This patch adds a new Vertex Color node. The node also returns the alpha
of the vertex color layer as an output.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5767
This patch allows the Voronoi node to operate in 1D, 2D, and 4D space.
It also adds a Randomness input to control the randomness of the texture.
Additionally, it adds three new modes of operation:
- Smooth F1: A smooth version of F1 Voronoi with no discontinuities.
- Distance To Edge: Returns the distance to the edges of the cells.
- N-Sphere Radius: Returns the radius of the n-sphere inscribed in
the cells. In other words, it is half the distance between the
closest feature point and the feature point closest to it.
And it removes the following three modes of operation:
- F3.
- F4.
- Cracks.
The Distance metric is now called Euclidean, and it computes the actual
euclidean distance as opposed to the old method of computing the squared
euclidean distance.
This breaks backward compatibility in many ways, including the base case.
Reviewers: brecht, JacquesLucke
Differential Revision: https://developer.blender.org/D5743
This patch extends Musgrave noise to operate in 1D, 2D, 3D, and 4D
space. The Color output was also removed because it was identical
to the Fac output.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D5566
We basically duplicate the height map branch plugged into the bump node,
and tag each node in each branch as dx/dy/ref using `branch_tag`.
Then we add a one pixel offset on the texture coordinates if the node is
tagged as dx or dy.
The dx/dy branches are plugged into (new) hidden sockets on the bump node.
This match cycles bump better but have a performance impact. Also, complex
nodetrees can now become instruction limited and not compile anymore.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5531