This splits the volume related data (properties for rendering and attributes) of the Mesh node
into a new `Volume` node type.
This `Volume` node derives from the `Mesh` class since we generate a mesh for the bounds of the
volume, as such we can safely work on `Volumes` as if they were `Meshes`, e.g. for BVH creation.
However such code should still check for the geometry type of the object to be `MESH` or `VOLUME`
which may be bug prone if this is forgotten.
This is part of T79131.
Reviewed By: brecht
Maniphest Tasks: T79131
Differential Revision: https://developer.blender.org/D8538
This commit adds a new model to the Sky Texture node, which is based on a
method by Nishita et al. and works by basically simulating volumetric
scattering in the atmosphere.
By making some approximations (such as only considering single scattering),
we get a fairly simple and fast simulation code that takes into account
Rayleigh and Mie scattering as well as Ozone absorption.
This code is used to precompute a 512x128 texture which is then looked up
during render time, and is fast enough to allow real-time tweaking in the
viewport.
Due to the nature of the simulation, it exposes several parameters that
allow for lots of flexibility in choosing the look and matching real-world
conditions (such as Air/Dust/Ozone density and altitude).
Additionally, the same volumetric approach can be used to compute absorption
of the direct sunlight, so the model also supports adding direct sunlight.
This makes it significantly easier to set up Sun+Sky illumination where
the direction, intensity and color of the sun actually matches the sky.
In order to support properly sampling the direct sun component, the commit
also adds logic for sampling a specific area to the kernel light sampling
code. This is combined with portal and background map sampling using MIS.
This sampling logic works for the common case of having one Sky texture
going into the Background shader, but if a custom input to the Vector
node is used or if there are multiple Sky textures, it falls back to using
only background map sampling (while automatically setting the resolution to
4096x2048 if auto resolution is used).
More infos and preview can be found here:
https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view
Underlying model, implementation and documentation by Marco (@nacioss).
Improvements, cleanup and sun sampling by @lukasstockner.
Differential Revision: https://developer.blender.org/D7896
This reverts commit 33ce0cb5a1.
Fix T77273: crash enabling portal lights. The optimization for background
updates can be added back later for 2.90 and 2.83.1.
This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender.
With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser.
Therefore, code that is not yet aware of tiles will just access the default tile as usual.
The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9.
Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator.
The following features are supported so far:
- Automatic detection and loading of all tiles when opening the first tile (1001)
- Saving all tiles
- Adding and removing tiles
- Filling tiles with generated images
- Drawing all tiles in the Image Editor
- Viewing a tiled grid even if no image is selected
- Rendering tiled images in Eevee
- Rendering tiled images in Cycles (in SVM mode)
- Automatically skipping loading of unused tiles in Cycles
- 2D texture painting (also across tiles)
- 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders)
- Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID)
- Different resolutions between tiles
There still are some missing features that will be added later (see T72390):
- Workbench engine support
- Packing/Unpacking support
- Baking support
- Cycles OSL support
- many other Blender features that rely on images
Thanks to Brecht for the review and to all who tested the intermediate versions!
Differential Revision: https://developer.blender.org/D3509
Cycles did not update the "is_enabled" flag on lights when they were synchronized again, which caused all lights disabled by "LightManager::disable_ineffective_light" to be disabled indefinitely. As a result the OptiX kernels were not reloaded with correct features when a change to a light was made. This fixes that by updating the "is_enabled" flag during synchronization.
Differential Revision: https://developer.blender.org/D6141
This is the angular diameter as seen from earth, which is between 0.526° and
0.545° in reality. Sharing the size with other light types did not make much
sense and meant the unit was unclear.
Differential Revision: https://developer.blender.org/D4819
Cycles lights now use strength and color properties of the light outside
of the shading nodes, just like Eevee. The shading nodes then act as a
multiplier on this, and become optional unless textures, fallof or other
effects are desired.
Backwards compatibility is not exact, as we can't be sure which renderer
the .blend was designed for or even if it was designed for a single one.
If the render engine in the active scene is set to Cycles, lights are
converted to ensure overall light strength remains the same, and removing
unnecessary shader node setups that only included a single emission node.
If the engine is set to Eevee, we increase strength to remove the automatic
100x multiplier that was there to match Cycles.
Differential Revision: https://developer.blender.org/D4588
It's effectively always enabled, only not on some unsupported OpenCL devices.
For testing those it's not useful to disable these features. This is replaced
by the more fine grained feature toggles that we have now.
The automatic mode checks all Enviroment Texture nodes and picks the largest image's resolution.
If there are no Enviroment Textures, it just uses the old default.
Also, the sampling map now isn't limited to square shapes. The automatic detection uses the exact image size,
the manual UI option now halves the value to get the height.
A default aspect ratio of 2:1 makes sense since this is what most HDRIs use.
Reviewers: brecht, sergey
Differential Revision: https://developer.blender.org/D3477
This patch adds support for IES files, a file format that is commonly used to store the directional intensity distribution of light sources.
The new IES node is supposed to be plugged into the Strength input of the Emission node of the lamp.
Since people generating IES files do not really seem to care about the standard, the parser is flexible enough to accept all test files I have tried.
Some common weirdnesses are distributing values over multiple lines that should go into one line, using commas instead of spaces as delimiters and adding various useless stuff at the end of the file.
The user interface of the node is similar to the script node, the user can either select an internal Text or load a file.
Internally, IES files are handled similar to Image textures: They are stored in slots by the LightManager and each unique IES is assigned to one slot.
The local coordinate system of the lamp is used, so that the direction of the light can be changed. For UI reasons, it's usually best to add an area light,
rotate it and then change its type, since especially the point light does not immediately show its local coordinate system in the viewport.
Reviewers: #cycles, dingto, sergey, brecht
Reviewed By: #cycles, dingto, brecht
Subscribers: OgDEV, crazyrobinhood, secundar, cardboard, pisuke, intrah, swerner, micah_denn, harvester, gottfried, disnel, campbellbarton, duarteframos, Lapineige, brecht, juicyfruit, dingto, marek, rickyblender, bliblubli, lockal, sergey
Differential Revision: https://developer.blender.org/D1543
The implementation is pretty straightforward.
In Cycles, sampling the shapes is currently done w.r.t. area instead of solid angle.
There is a paper on solid angle sampling for disks [1], but the described algorithm is based on
simply sampling the enclosing square and rejecting samples outside of the disk, which is not exactly
great for Cycles' RNG (we'd need to setup a LCG for the repeated sampling) and for GPU divergence.
Even worse, the algorithm is only defined for disks. For ellipses, the basic idea still works, but a
way to analytically calculate the solid angle is required. This is technically possible [2], but the
calculation is extremely complex and still requires a lookup table for the Heuman Lambda function.
Therefore, I've decided to not implement that for now, we could still look into it later on.
In Eevee, the code uses the existing ltc_evaluate_disk to implement the lighting calculations.
[1]: "Solid Angle Sampling of Disk and Cylinder Lights"
[2]: "Analytical solution for the solid angle subtended at any point by an ellipse via a point source radiation vector potential"
Reviewers: sergey, brecht, fclem
Differential Revision: https://developer.blender.org/D3171
This save a little memory and copying in the kernel by storing only a 4x3
matrix instead of a 4x4 matrix. We already did this in a few places, and
those don't need to be special exceptions anymore now.
This causes some difference in the classroom scene, where ray visibility
tricks are used and break the MIS balance. Otherwise there doesn't seem
to be much effect, but better to use the right formulas. Problem originally
identified by Lukas.
* Remove tex_* and pixels_* functions, replace by mem_*.
* Add MEM_TEXTURE and MEM_PIXELS as memory types recognized by devices.
* No longer create device_memory and call mem_* directly, always go
through device_only_memory, device_vector and device_pixels.