It is basically brute force volume scattering within the mesh, but part
of the SSS code for faster performance. The main difference with actual
volume scattering is that we assume the boundaries are diffuse and that
all lighting is coming through this boundary from outside the volume.
This gives much more accurate results for thin features and low density.
Some challenges remain however:
* Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help
here, but it's unclear still how much it helps in real world cases.
* Due to this being a volumetric method, geometry like eyes or mouth can
darken the skin on the outside. We may be able to reduce this effect,
or users can compensate for it by reducing the scattering radius in
such areas.
* Sharp corners are quite bright. This matches actual volume rendering
and results in some other renderers, but maybe not so much real world
objects.
Differential Revision: https://developer.blender.org/D3054
Previously we stored each color channel in a single closure, which was
convenient for sampling a closure and channel together. But this doesn't
work so well for algorithms where we want to render multiple color
channels together.
Goal is to reduce OpenCL kernel recompilations.
Currently viewport renders are still set to use 64 closures as this seems to
be faster and we don't want to cause a performance regression there. Needs
to be investigated.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D2775
With a Titan Xp, reduces path trace local memory from 1092MB to 840MB.
Benchmark performance was within 1% with both RX 480 and Titan Xp.
Original patch was implemented by Sergey.
Differential Revision: https://developer.blender.org/D2249
Similar to what we did for area lights previously, this should help
preserve stratification when using multiple BSDFs in theory. Improvements
are not easily noticeable in practice though, because the number of BSDFs
is usually low. Still nice to eliminate one sampling dimension.
Also pass by value and don't write back now that it is just a hash for seeding
and no longer an LCG state. Together this makes CUDA a tiny bit faster in my
tests, but mainly simplifies code.
Unlike regular path tracing, branched path tracing is usually used with lower
sample counts, at least for primary rays. This means that are less samples for
the GPU to work on in parallel and rendering is slower. As there is less work
overall there is also more inactive threads during rendering with BPT. This
patch makes use of those inactive rays to render branched samples in parallel
with other samples.
Each thread that is preparing for a branched sample will attempt to find an
inactive thread and if one is found the state for the sample is copied to that
thread. Potentially, if there are enough inactive threads, 100s of branched
samples could be generated from the same originating thread and ran in
parallel giving large speed ups.
Gives 70% faster render for pavillion midday scene. 20-60% faster on BMW
with car paint replaced with SSS/volumes.
This implements branched path tracing for the split kernel.
General approach is to store the ray state at a branch point, trace the
branched ray as normal, then restore the state as necessary before iterating
to the next part of the path. A state machine is used to advance the indirect
loop state, which avoids the need to add any new kernels. Each iteration the
state machine recreates as much state as possible from the stored ray to keep
overall storage down.
Its kind of hard to keep all the different integration loops in sync, so this
needs lots of testing to make sure everything is working correctly. We should
probably start trying to deduplicate the integration loops more now.
Nonbranched BMW is ~2% slower, while classroom is ~2% faster, other scenes
could use more testing still.
Reviewers: sergey, nirved
Reviewed By: nirved
Subscribers: Blendify, bliblubli
Differential Revision: https://developer.blender.org/D2611
Simplifies code quite a bit, making it shorter and easier to extend.
Currently no functional changes for users, but is required for the
upcoming work of shadow catcher support with OpenCL.
Decoupled ray marching is not supported yet.
Transparent shadows are always enabled for volume rendering.
Changes in kernel/bvh and kernel/geom are from Sergey.
This simiplifies code significantly, and prepares it for
record-all transparent shadow function in split kernel.