This never really worked as it was supposed to. The main goal of this is to
turn noise from sampling tiny hairs into multiple layers of transparency that
do not need to be sampled stochastically. However the implementation of this
worked by randomly discarding hair intersections in BVH traversal, which
defeats the purpose.
If it ever comes back, it's best implemented outside the kernel as a preprocess
that changes hair radius before BVH building. This would also make it work with
Embree, where it's not supported now. But it's not so clear anymore that with
many AA samples and GPU rendering this feature is as helpful as it once was for
CPU raytracers with few AA samples.
The benefit of removing this feature is improved hair ray tracing performance,
tested on NVIDIA Titan Xp:
bmw27: +0.37%
classroom: +0.26%
fishy_cat: -7.36%
koro: -12.98%
pabellon: -0.12%
Differential Revision: https://developer.blender.org/D4532
Note that this is turned off by default and must be enabled at build time with the CMake WITH_CYCLES_EMBREE flag.
Embree must be built as a static library with ray masking turned on, the `make deps` scripts have been updated accordingly.
There, Embree is off by default too and must be enabled with the WITH_EMBREE flag.
Using Embree allows for much faster rendering of deformation motion blur while reducing the memory footprint.
TODO: GPU implementation, deduplication of data, leveraging more of Embrees features (e.g. tessellation cache).
Differential Revision: https://developer.blender.org/D3682
This is a physically-based, easy-to-use shader for rendering hair and fur,
with controls for melanin, roughness and randomization.
Based on the paper "A Practical and Controllable Hair and Fur Model for
Production Path Tracing".
Implemented by Leonardo E. Segovia and Lukas Stockner, part of Google
Summer of Code 2018.
This save a little memory and copying in the kernel by storing only a 4x3
matrix instead of a 4x4 matrix. We already did this in a few places, and
those don't need to be special exceptions anymore now.