Commit Graph

64 Commits

Author SHA1 Message Date
b0b9e746fa BLI: Use BLI_math_matrix_type.hh instead of BLI_math_float4x4.hh
Straightforward port. I took the oportunity to remove some C vector
functions (ex: copy_v2_v2).

This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
2023-02-06 21:25:45 +01:00
b5e00a1482 Revert "BLI: Use BLI_math_matrix_type.hh instead of BLI_math_float4x4.hh"
This reverts commit 52de84b0db.

had some build issues on windows i can't quickly resolve, revert for
now while we fix the problems
2023-02-02 11:46:23 -07:00
52de84b0db BLI: Use BLI_math_matrix_type.hh instead of BLI_math_float4x4.hh
Straightforward port. I took the oportunity to remove some C vector
functions (ex: `copy_v2_v2`).

This makes some changes to DRWView to accomodate the alignement
requirements of the float4x4 type.
2023-02-02 18:11:35 +01:00
33c30af742 Cleanup: comments in struct declarations
Use a consistent style for declaring the names of struct members
in their declarations. Note that this convention was already used in
many places but not everywhere.

Remove spaces around the text (matching commented arguments) with
the advantage that the the spell checking utility skips these terms.
Making it possible to extract & validate these comments automatically.

Also use struct names for `bAnimChannelType` & `bConstraintTypeInfo`
which were using brief descriptions.
2023-01-16 13:27:35 +11:00
Martijn Versteegh
6c774feba2 Mesh: Move UV layers to generic attributes
Currently the `MLoopUV` struct stores UV coordinates and flags related
to editing UV maps in the UV editor. This patch changes the coordinates
to use the generic 2D vector type, and moves the flags into three
separate boolean attributes. This follows the design in T95965, with
the ultimate intention of simplifying code and improving performance.

Importantly, the change allows exporters and renderers to use UVs
"touched" by geometry nodes, which only creates generic attributes.
It also allows geometry nodes to create "proper" UV maps from scratch,
though only with the Store Named Attribute node for now.

The new design considers any 2D vector attribute on the corner domain
to be a UV map. In the future, they might be distinguished from regular
2D vectors with attribute metadata, which may be helpful because they
are often interpolated differently.

Most of the code changes deal with passing around UV BMesh custom data
offsets and tracking the boolean "sublayers". The boolean layers are
use the following prefixes for attribute names: vert selection: `.vs.`,
edge selection: `.es.`, pinning: `.pn.`. Currently these are short to
avoid using up the maximum length of attribute names. To accommodate
for these 4 extra characters, the name length limit is enlarged to 68
bytes, while the maximum user settable name length is still 64 bytes.

Unfortunately Python/RNA API access to the UV flag data becomes slower.
Accessing the boolean layers directly is be better for performance in
general.

Like the other mesh SoA refactors, backward and forward compatibility
aren't affected, and won't be changed until 4.0. We pay for that by
making mesh reading and writing more expensive with conversions.

Resolves T85962

Differential Revision: https://developer.blender.org/D14365
2023-01-10 01:01:43 -05:00
6ef8db35e7 Cleanup: clarify naming for deformed vertex positions & normals
Edit-mesh duplicator logic used a struct member vert_coords which read
as an alternative (and inconsistent) naming to vert_positions.

Rename to `vert_positions_deform` as the purpose of this value is to
assign when modifiers deform an edit-mesh.
Add `_deform` suffix to normals as well.
2023-01-10 16:43:14 +11:00
d48f95d31c Cleanup: use vert_ prefix for positions of FaceDupliData_Mesh
Match VertexDupliData_Mesh.
2023-01-10 16:36:15 +11:00
1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
8f44c37f5c Cleanup: Rename BLI_math_vec_types* files to BLI_math_vector_types
This is for the sake of consistency and clarity.
2023-01-06 20:09:51 +01:00
2652029f3b Cleanup: Clang tidy
Addressed almost all warnings except for replacing defines
with enums and variable assignment in if statements.
2022-12-29 12:01:32 -05:00
3250ab31cd Cleanup: Remove debug print
Was introduced in 0e6d893d07.
2022-11-23 12:53:35 +01:00
0e6d893d07 Fix: Assert, invisible instances with mixed instancing types
When combining the internal geometry component instancing (used when
the original object type doesn't match the evaluated data type) with
the "vertex dupli" instancing could cause the fix from e508de0417
to fail, because the subsequent fix from 864af51d6a popped from the
"instance generator type" stack even when there was nothing added to it
(for geometry instancing).
2022-11-22 15:38:19 -06:00
864af51d6a Fix: Failing instance visibility test after recent commit
The "visibility_instances.blend" cycles test was failing..
The stack of dupli generator types added in e508de0417
wasn't "popped" correctly after recursive duplis were generated.
2022-11-11 12:32:18 -06:00
e508de0417 Fix T100706: Object instances with different geometry type invisible
Code in `deg_object_hide_original` uses the dupli object type to decide
whether to hide the original object. The geometry component system
changed the dupli object generator types, which made this not work.
To maintain existing behavior, maintain a stack of non-geometry-nodes
generator types while building the dupli list, and assign that to the
dupli object instead.

I think this code is on its last legs. It can't handle too many more
hacky fixes like this, and should be replaced soon. Hopefully that is
possible by using a `bke::Instances` type instead. However, this
bug is bad enough that it's worth fixing like this.

Differential Revisions: https://developer.blender.org/D16460
2022-11-11 09:06:50 -06:00
80f5a5a8aa Fix T101270: Object Info > Random not unique for nested instances and curves
This random number is intended to be unique for every instance, however for
some cases with more than one level of nesting this was failing. This also
affected curves after they were refactored to use geometry sets.

For simple cases the random number is the same as before, however for more
complex nesting it will be different than before, changing the render result.
2022-11-11 14:45:01 +01:00
7f6521f8dc Fix T100883: crash with particle instancing and clumping
Properly initialize clump curve mapping tables for duplis and other cases
where this was missed by making a generic init/free function instead of
duplicating the same logic in multiple places. Also fold lattice deform
init into this.
2022-11-09 20:37:55 +01:00
38c7fd36ff Refactor: Rename Object->imat to Object->world_to_object
The goal is to improve clarity and readability, without
introducing big design changes.

Follows the recent obmat to object_to_world refactor: the
similar naming is used, and it is a run-time only rename,
meaning, there is no affect on .blend files.

This patch does not touch the redundant inversions. Those
can be removed in almost (if not all) cases, but it would
be the best to do it as a separate change.

Differential Revision: https://developer.blender.org/D16367
2022-11-02 15:42:23 +01:00
f17fbf8065 Refactor: Rename Object->obmat to Object->object_to_world
Motivation is to disambiguate on the naming level what the matrix
actually means. It is very easy to understand the meaning backwards,
especially since in Python the name goes the opposite way (it is
called `world_matrix` in the Python API).

It is important to disambiguate the naming without making developers
to look into the comment in the header file (which is also not super
clear either). Additionally, more clear naming facilitates the unit
verification (or, in this case, space validation) when reading an
expression.

This patch calls the matrix `object_to_world` which makes it clear
from the local code what is it exactly going on. This is only done
on DNA level, and a lot of local variables still follow the old
naming.

A DNA rename is setup in a way that there is no change on the file
level, so there should be no regressions at all.

The possibility is to add `_matrix` or `_mat` suffix to the name
to make it explicit that it is a matrix. Although, not sure if it
really helps the readability, or is it something redundant.

Differential Revision: https://developer.blender.org/D16328
2022-11-01 10:48:18 +01:00
e5425b566d Geometry Nodes: separate Instances from InstancesComponent
This makes instance handling more consistent with all the other geometry
component types. For example, `MeshComponent` contains a `Mesh *` and
now `InstancesComponent` has a `Instances *`.

Differential Revision: https://developer.blender.org/D16137
2022-10-17 11:39:58 +02:00
c34c6d3e25 Mesh: Move runtime data out of DNA
This commit replaces the `Mesh_Runtime` struct embedded in `Mesh`
with `blender::bke::MeshRuntime`. This has quite a few benefits:
- It's possible to use C++ types like `std::mutex`, `Array`,
  `BitVector`, etc. more easily
- Meshes saved in files are slightly smaller
- Copying and writing meshes is a bit more obvious without
  clearing of runtime data, etc.

The first is by far the most important. It will allows us to avoid a
bunch of manual memory management boilerplate that is error-prone and
annoying. It should also simplify future CoW improvements for runtime
data.

This patch doesn't change anything besides changing `mesh.runtime.data`
to `mesh.runtime->data`. The cleanups above will happen separately.

Differential Revision: https://developer.blender.org/D16180
2022-10-12 20:55:57 -05:00
f61ff22967 Attribute Node: support accessing attributes of View Layer and Scene.
The attribute node already allows accessing attributes associated
with objects and meshes, which allows changing the behavior of the
same material between different objects or instances. The same idea
can be extended to an even more global level of layers and scenes.

Currently view layers provide an option to replace all materials
with a different one. However, since the same material will be applied
to all objects in the layer, varying the behavior between layers while
preserving distinct materials requires duplicating objects.

Providing access to properties of layers and scenes via the attribute
node enables making materials with built-in switches or settings that
can be controlled globally at the view layer level. This is probably
most useful for complex NPR shading and compositing. Like with objects,
the node can also access built-in scene properties, like render resolution
or FOV of the active camera. Lookup is also attempted in World, similar
to how the Object mode checks the Mesh datablock.

In Cycles this mode is implemented by replacing the attribute node with
the attribute value during sync, allowing constant folding to take the
values into account. This means however that materials that use this
feature have to be re-synced upon any changes to scene, world or camera.

The Eevee version uses a new uniform buffer containing a sorted array
mapping name hashes to values, with binary search lookup. The array
is limited to 512 entries, which is effectively limitless even
considering it is shared by all materials in the scene; it is also
just 16KB of memory so no point trying to optimize further.
The buffer has to be rebuilt when new attributes are detected in a
material, so the draw engine keeps a table of recently seen attribute
names to minimize the chance of extra rebuilds mid-draw.

Differential Revision: https://developer.blender.org/D15941
2022-10-08 16:43:18 +03:00
11abeae99f Cleanup: use function style casts for C++ 2022-10-07 22:55:03 +11:00
2f7234d3e1 Attribute Node: access geometry node instance attributes.
The Instancer mode of the node is intended for varying material
behavior between instances. Since Geometry Nodes support arbitrary
named instance attributes, this mode should include them in lookup.

To implement this it is sufficient to store references to Geometry
Node data in DupliObject, and check it during dupli attribute lookup.

In order to reduce the memory usage of DupliObject, only 4 array
entries are allocated, even though the current dupli recursion stack
limit is 8. This assumes that not every entry would be associated with
a GeometrySet instance. Hopefully, soon the whole system will be
rewritten to remove the hard limits altogether.

Differential Revision: https://developer.blender.org/D16114
2022-10-03 18:02:24 +03:00
554afabf75 Attribute Node: refactor lookup to remove duplication between engines.
Currently lookup of Object and Instancer attributes is completely
duplicated between Cycles, Eevee and Eevee Next. This is bad design,
so this patch aims to deduplicate it by introducing a common API
in blenkernel.

In case of Cycles this requires certain hacks, but according to
Brecht it is planned to be rewritten later for more direct access
to internal Blender data anyway.

Differential Revision: https://developer.blender.org/D16117
2022-09-30 20:01:57 +03:00
c55d38f00b Geometry Nodes: viewport preview
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.

**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
  makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
  is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
  its active or not.

**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
  When pinned, the spreadsheet still references the viewer node even
  when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
  the active viewer.

**Attribute**
* When a field is linked to the second input of the viewer node it is
  displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
  automatically. This does not work in all cases. It falls back to the
  face corner domain on meshes and the point domain on curves. When
  necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
  that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.

**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
  setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
  by disabling the "Viewer Node" option in the "View" menu.

**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
  is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
  field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
  attribute.
* The ground truth for the active viewer node is stored in the workspace
  now. Node editors, spreadsheets and viewports retrieve the active
  viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
  the viewed geometry of the corresponding object is part of the iterator
  instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
  to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
  existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
  "preferred domain" for every field input. If there is not exactly one
  preferred domain, the fallback is used.

Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
  added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
  the values might have to be normalized or some should be drawn as arrays.
  For now, we encourage users to build node groups that generate appropriate
  viewer-geometry. We might include some of that functionality in future versions.
  Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
  nvidia gpus, to be investigated.

Differential Revision: https://developer.blender.org/D15954
2022-09-28 17:54:59 +02:00
21d77a417e Cleanup: replace C-style casts with functional casts for numeric types
Some changes missed from f68cfd6bb0.
2022-09-25 22:31:31 +10:00
f68cfd6bb0 Cleanup: replace C-style casts with functional casts for numeric types 2022-09-25 20:17:08 +10:00
891949cbb4 Cleanup: use 'u' prefixed integer types for brevity & cast style
To use function style cast '(unsigned char)x' can't be replaced by
'unsigned char(x)'.
2022-09-25 18:26:27 +10:00
e5d4afd5ba Depsgraph: generalize passing parameters to depsgraph object iterator
This makes it easier to pass more parameters to the iterator in the future.

Differential Revision: https://developer.blender.org/D16047
2022-09-23 12:41:22 +02:00
be038b844c Cleanup: Tweak naming for recently added mesh accessors
Use `verts` instead of `vertices` and `polys` instead of `polygons`
in the API added in 05952aa94d. This aligns better with
existing naming where the shorter names are much more common.
2022-09-07 00:06:31 -05:00
05952aa94d Mesh: Remove redundant custom data pointers
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.

The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.

Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).

The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.

**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.

Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).

Differential Revision: https://developer.blender.org/D15488
2022-09-05 11:56:34 -05:00
eaa87101cd Metaball: Evaluate metaball objects as mesh components
With the ultimate goal of simplifying drawing and evaluation,
this patch makes the following changes and removes code:
- Use `Mesh` instead of `DispList` for evaluated basis metaballs.
- Remove all `DispList` drawing code, which is now unused.
- Simplify code that converts evaluated metaballs to meshes.
- Store the evaluated mesh in the evaluated geometry set.

This has the following indirect benefits:
- Evaluated meshes from metaball objects can be used in geometry nodes.
- Renderers can ignore evaluated metaball objects completely
- Cycles rendering no longer has to convert to mesh from `DispList`.
- We get closer to removing `DispList` completely.
- Optimizations to mesh rendering will also apply to metaball objects.

The vertex normals on the evaluated mesh are technically invalid;
the regular calculation wouldn't reproduce them. Metaball objects
don't support modifiers though, so it shouldn't be a problem.
Eventually we can support per-vertex custom normals (T93551).

Differential Revision: https://developer.blender.org/D14593
2022-08-17 10:20:25 -04:00
1d68318e97 Cleanup: Add function for creating object dupli with separate data 2022-08-09 14:44:47 -05:00
2839fe9a4d Curves: initial geometry nodes support for curves objects
* Curves objects now support the geometry nodes modifier.
* It's possible to use the curves object with the Object Info node.
* The spreadsheet shows the curve data.

The main thing holding this back currently is that the drawing code
for the curves object is very incomplete. E.g. it resamples the curves
always in the end, which is not expected for curves in general.

Differential Revision: https://developer.blender.org/D14277
2022-04-15 09:08:50 +02:00
bb7e3c2b56 Cleanup: Simplify if statements, clang tidy 2022-04-05 16:40:44 -05:00
1f6c2507f8 Cleanup: Remove legacy dupli system from point cloud object
The "dupli" system now has a faster, more powerful, and more flexible
alternative with geometry nodes. Since the point cloud objects haven't
been exposed in the non-experimental UI yet, we can remove the dupli
implementation and the panel for the object type.

Differential Revision: https://developer.blender.org/D14482
2022-03-29 10:16:05 -05:00
ddf189892c Cleanup: Rename original curve object type enum
This commit renames enums related the "Curve" object type and ID type
to add `_LEGACY` to the end. The idea is to make our aspirations clearer
in the code and to avoid ambiguities between `CURVE` and `CURVES`.

Ref T95355

To summarize for the record, the plans are:
- In the short/medium term, replace the `Curve` object data type with
 `Curves`
- In the longer term (no immediate plans), use a proper data block for
  3D text and surfaces.

Differential Revision: https://developer.blender.org/D14114
2022-02-18 09:50:29 -06:00
c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00
0f89bcdbeb Fix depsgraphs sharing IDs via evaluated edit mesh
The evaluated mesh is a result of evaluated modifiers, and referencing
other evaluated IDs such as materials.
It can not be stored in the EditMesh structure which is intended to be
re-used by many areas. Such sharing was causing ownership errors causing
bugs like

  T93855: Cycles crash with edit mode and simultaneous viewport and final render

The proposed solution is to store the evaluated edit mesh and its cage in
the object's runtime field. The motivation goes as following:

- It allows to avoid ownership problems like the ones in the linked report.
- Object level is chosen over mesh level is because the evaluated mesh
  is affected by modifiers, which are on the object level.

This patch allows to have modifier stack of an object which shares mesh with
an object which is in edit mode to be properly taken into account (before
the change the modifier stack from the active object will be used for all
objects which share the mesh).

There is a change in the way how copy-on-write is handled in the edit mode to
allow proper state update when changing active scene (or having two windows
with different scenes). Previously, the copt-on-write would have been ignored
by skipping tagging CoW component. Now it is ignored from within the CoW
operation callback. This allows to update edit pointers for objects which are
not from the current depsgraph and where the edit_mesh was never assigned in
the case when the depsgraph was evaluated prior the active depsgraph.

There is no user level changes changes expected with the CoW handling changes:
should not affect on neither performance, nor memory consumption.

Tested scenarios:

- Various modifiers configurations of objects sharing mesh and be part of the
  same scene.

- Steps from the reports: T93855, T82952, T77359

This also fixes T76609, T72733 and perhaps other reports.

Differential Revision: https://developer.blender.org/D13824
2022-01-25 14:32:23 +01:00
cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00
97c2c39916 Fix T94624: Object as font instances don't work
The fundamental limitation is that we can only have one instance
("dupli") generator at a time. Because the mesh output of a curve
object is output as an instances, the geometry set instances existed,
replacing the object as font instances. The "fix" is to reverse the
order. The behavior won't be perfect still, but at least the old
behavior will be preserved, which is really what matters for a
feature like this.

One way to take this change further would be completely disabling
regular geometry evaluation while this option is active. However,
it doesn't seem like that would actually improve the state of the code.

Differential Revision: https://developer.blender.org/D13768
2022-01-12 13:46:13 -06:00
d43b5791e0 BLI: Refactor vector types & functions to use templates
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.

In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.

####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).

####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.

####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`

####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.

I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.

Reviewed By: brecht, sergey, JacquesLucke

Differential Revision: https://developer.blender.org/D13791
2022-01-12 12:57:07 +01:00
fb6bd88644 Revert "BLI: Refactor vector types & functions to use templates"
Includes unwanted changes

This reverts commit 46e049d0ce.
2022-01-12 12:50:02 +01:00
Clment Foucault
46e049d0ce BLI: Refactor vector types & functions to use templates
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.

In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.

####Motivations:
 - We are aiming to share UBO and SSBO structures between GLSL and C++.
 This means we will use many of the existing vector types and others
 we currently don't have (uintX, intX). All these variations were
 asking for many more code duplication.
 - Deduplicate existing code which is duplicated for each vector size.
 - We also want to share small functions. Which means that vector
 functions should be static and not in the class namespace.
 - Reduce friction to use these types in new projects due to their
 incompleteness.
 - The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
 bit of a let down. Most clases are incomplete, out of sync with each
 others with different codestyles, and some functions that should be
 static are not (i.e: `float3::reflect()`).

####Upsides:
 - Still support `.x, .y, .z, .w` for readability.
 - Compact, readable and easilly extendable.
 - All of the vector functions are available for all the vectors types
 and can be restricted to certain types. Also template specialization
 let us define exception for special class (like mpq).
 - With optimization ON, the compiler unroll the loops and performance
 is the same.

####Downsides:
 - Might impact debugability. Though I would arge that the bugs are
 rarelly caused by the vector class itself (since the operations are
 quite trivial) but by the type conversions.
 - Might impact compile time. I did not saw a significant impact since
 the usage is not really widespread.
 - Functions needs to be rewritten to support arbitrary vector length.
 For instance, one can't call `len_squared_v3v3` in
 `math::length_squared()` and call it a day.
 - Type cast does not work with the template version of the `math::`
 vector functions. Meaning you need to manually cast `float *` and
 `(float *)[3]` to `float3` for the function calls.
 i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
 - Some parts might loose in readability:
 `float3::dot(v1.normalized(), v2.normalized())`
 becoming
 `math::dot(math::normalize(v1), math::normalize(v2))`
 But I propose, when appropriate, to use
 `using namespace blender::math;` on function local or file scope to
 increase readability.
 `dot(normalize(v1), normalize(v2))`

####Consideration:
 - Include back `.length()` method. It is quite handy and is more C++
 oriented.
 - I considered the GLM library as a candidate for replacement. It felt
 like too much for what we need and would be difficult to extend / modify
 to our needs.
 - I used Macros to reduce code in operators declaration and potential
 copy paste bugs. This could reduce debugability and could be reverted.
 - This touches `delaunay_2d.cc` and the intersection code. I would like
 to know @howardt opinion on the matter.
 - The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
 But according to @JacquesLucke it is not a real problem for now.

I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.

Reviewed By: brecht, sergey, JacquesLucke

Differential Revision: https://developer.blender.org/D13791
2022-01-12 12:47:43 +01:00
e5766752d0 Revert "BLI: Refactor vector types & functions to use templates"
Reverted because the commit removes a lot of commits.

This reverts commit a2c1c368af.
2022-01-12 12:44:26 +01:00
a2c1c368af BLI: Refactor vector types & functions to use templates
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.

In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.

Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
  This means we will use many of the existing vector types and others we
  currently don't have (uintX, intX). All these variations were asking
  for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
  should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
  incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
  let down. Most clases are incomplete, out of sync with each others with
  different codestyles, and some functions that should be static are not
  (i.e: float3::reflect()).

Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
  can be restricted to certain types. Also template specialization let us
  define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
  the same.

Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
  caused by the vector class itself (since the operations are quite trivial)
  but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
  usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
  instance, one can't call len_squared_v3v3 in math::length_squared() and
  call it a day.
- Type cast does not work with the template version of the math:: vector
  functions. Meaning you need to manually cast float * and (float *)[3] to
  float3 for the function calls.
  i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
  float3::dot(v1.normalized(), v2.normalized())
  becoming
  math::dot(math::normalize(v1), math::normalize(v2))
  But I propose, when appropriate, to use
  using namespace blender::math; on function local or file scope to
  increase readability. dot(normalize(v1), normalize(v2))

Consideration:
- Include back .length() method. It is quite handy and is more C++
  oriented.
- I considered the GLM library as a candidate for replacement.
  It felt like too much for what we need and would be difficult to
  extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
  copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
  know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
  But according to @Jacques Lucke (JacquesLucke) it is not a real problem
  for now.

I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.

Reviewed By: brecht, sergey, JacquesLucke

Differential Revision: http://developer.blender.org/D13791
2022-01-12 12:19:39 +01:00
6e0cf86e73 Cleanup: use new c++ guarded allocator API
API added in rBa3ad5abf2fe85d623f9e78fefc34e27bdc14632e
2021-12-24 22:18:04 -05:00
d79868c4e6 Fix T93975: add more nested instance limit checks
Differential Revision: https://developer.blender.org/D13585
2021-12-15 15:46:39 +01:00
a7b64a714d Cleanup: Silence clang-tidy warnings. 2021-12-08 09:52:38 +01:00
ffc4c126f5 Cleanup: move public doc-strings into headers for 'blenkernel'
- Added space below non doc-string comments to make it clear
  these aren't comments for the symbols directly below them.
- Use doxy sections for some headers.
- Minor improvements to doc-strings.

Ref T92709
2021-12-07 17:38:48 +11:00