Separate the "insert nodes into group" operation into more distinct
phases. This helps to clarify what is actually happening, to avoid
redundant updates to group nodes every time a new socket is discovered,
and to make use of the topology cache to avoid the "accidentally
quadratic" alrogithms that we have slowly been removing from node
editing.
The change is motivated by the desire to use dynamic node declarations
for group nodes and group input/output nodes, where it is helpful to
avoid updating the declaration and sockets multiple times.
This is essentially a left-over from the initial transition to fields where this was
forgotten. The mesh primitive nodes used to create a named uv map attribute
with a hard-coded name. The standard way to deal with that in geometry nodes
now is to output the attribute as a socket instead. The user can then decide
to store it as a named attribute or not.
The benefits of not always storing the named attribute in the node are:
* Improved performance and lower memory usage when the uv map is not
used.
* It's more obvious that there actually is a uv map.
* The hard-coded name was inconsistent.
The versioning code inserts a new Store Named Attribute node that
stores the uv map immediatly. In many cases, users can probably just
remove this node without affecting their final result, but we can't
detect that.
There is one behavior change which is that the stored uv map will be
a 3d vector instead of a 2d vector which is what the nodes originally created.
We could store the uv map as 2d vector inthe Store Named Attribute node,
but that has the problem that older Blender versions don't support this
and would crash immediately. Users can just change this to 2d vector
manually if they don't care about forward compatibility.
There is a plan to support 2d vectors more natively in geometry nodes: T92765.
This change breaks forward compatibility in the case when the uv map
was used.
Differential Revision: https://developer.blender.org/D16637
Add `bNode::index()` to allow accessing node indices directly without
manually de-referencing the runtime struct. Also adds some asserts to
make sure the access is valid and to check the nodes runtime vector.
Eagerly maintain the node's index in the tree so it can be accessed
without relying on the topology cache.
Differential Revision: https://developer.blender.org/D16683
You shouldn't be able to retrieve a mutable node from a const node tree
or a mutable socket from a const node. Use const_cast in one place in
order to correct this without duplicating the function, which is still
awkward in the C-API.
In a few places, nodes were added without updating the Identifiers and
vector. In other places nodes we removed without removing from and
rebuilding the vector. This is solved in a few ways. First I exposed
a function to rebuild the vector from scratch, and added unique ID
finding to a few places.
The changes to node group building and separating are more involved,
mostly because it was hard to see the correct behavior without some
refactoring. Now `VectorSet` is used to store nodes involved in the
operation. Some things are handled more simply with the topology
cache and by passing a span of nodes.
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.
Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.
I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.
Differential Revision: https://developer.blender.org/D15775
This cache was never written to, only "copied" between sockets in one
case, it dates back at least a decade. It doesn't make sense to store
caches on node trees directly anyway, since they can be used in
multiple places.
The main goal here is to move towards more self contained node
definitions. Previously, one would have to change `blenkernel` to
add a new node which is not necessary anymore. There is no need
for all these register functions to "leak out" of the nodes module.
Differential Revision: https://developer.blender.org/D16612
This is not used for anything in practice currently. The original intention
was probably to generate different socket subtypes, but that is solved
differently now (e.g. using `NodeSocketFloatDistance`). It's possible
that an addon tried to use this but it's rather unlikely.
Differential Revision: https://developer.blender.org/D13188
The node level was an indication of how deep the node was in the tree.
It was only used for detecting link cycles. Now that the node topology
cache from 25e307d725 exists, this calculation can be removed
completely.
The level calculation was quadratic and very slow on larger node trees.
In the mouse house file with a few thousand nodes, it took 23ms on
every single update. Another benefit is storing slightly less runtime
data, though this was only 2 bytes per node.
Differential Revision: https://developer.blender.org/D16566
Instead of generating a dependency sorted node list whenever evaluating
texture or EEVEE/viewport shader nodes, use the existing sorted array
from the topology cache. This may be more efficient because the
algorithm isn't quadratic. It's also the second-to-last place to
use `node.runtime->level`, which can be removed soon.
Differential Revision: https://developer.blender.org/D16565
* This patch just moves runtime data to the runtime struct to cleanup
the dna struct. Arguably, some of this data should not even be there
because it's very use case specific. This can be cleaned up separately.
* `miniwidth` was removed completely, because it was not used anywhere.
The corresponding rna property `width_hidden` is kept to avoid
script breakage, but does not do anything (e.g. node wrangler sets it).
* Since rna is in C, some helper functions where added to access the
C++ runtime data from rna.
* This size of `bNode` decreases from 432 to 368 bytes.
This allows for optimizations because one does not have to iterate
over all nodes anymore to find all nodes within a frame.
Differential Revision: https://developer.blender.org/D16106
This commit adds a new "Image Info" node to retrieve various
information from an image like its width, height, and whether
it has an alpha channel. It is also possible to retrieve the FPS
and frame count of video files.
Differential Revision: https://developer.blender.org/D15042
This was caused by rBc39eb09ae587e1d9. The optimization broke the case
when the socket is not in the provided node tree. Now there are two separate
functions, one that always does the slow check to see of the socket is really
in the node tree and a potentially much faster version when we are sure
that the socket is in the tree.
The new Xcode 14.1 brings the new Apple Clang compiler which
considers sprintf unsafe and geenrates deprecation warnings
suggesting to sue snprintf instead. This only happens for C++
code by default, and C code can still use sprintf without any
warning.
This changes does the following:
- Whenever is trivial replace sprintf() with BLI_snprintf.
- For all other cases use the newly introduced BLI_sprintf
which is a wrapper around sprintf() but without warning.
There is a discouragement note in the BLI_sprintf comment to
suggest use of BLI_snprintf when the size is known.
Differential Revision: https://developer.blender.org/D16410
**Problem**
Currently multiple input sockets are created when a new node group is
made from selected nodes. Some of these are linked from the same source.
It is not convenient to sort out and remove multiple input sockets that
represent the same input. These inputs usually have meaningless names
like 'value', 'x', etc.
**Solution**
Create common input sockets for each link starting from the same input.
Move links inside the new group's node tree and reroute it to connect
the common input socket to the original nodes. This is done by building
up a mapping between the incoming link sources to the input interfaces
created for them. The input interfaces are reused by the rest of the
links having the same source.
This patch also changes the way the input sockets get their names.
Output socket names of the group nodes usually are specific and are
given consciously. Use the output socket names from group nodes instead
of the inputs where the links point to.
Differential Revision: https://developer.blender.org/D15802
Use the newly added node topology cache to find the node that contains
a socket rather than looping through all nodes every time. The change
improves performance of drawing a some large node trees by 2-3x.
Internal links are run-time/derived data. Therefore it is not necessary
to load them from .blend files where invalid internal links may be stored.
They will be regenerated after a node tree is loaded anyway.
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
Rename the node to "Offset Point in Curve"
Since this was committed, more mesh and curve topology nodes have been
committed with a different naming scheme (482d431bb6). Change
the name of this node to match "Offset Corner in Face". Because the
node was only added recently, it's a full rename, including the ID,
so forward compatibility is broken.
This node allows for curves to have their evaluated normal mode changed
between MINIMUM_TWIST and Z_UP. A selection input allows for choosing
which spline in the curves object will be affected.
Differential Revision: D16118
This node allows sampling an attribute on a mesh surface based
on a UV coordinate. Internally, this has to do a "reverse uv lookup",
i.e. the node has to find the polygon that corresponds to the uv
coordinate. Therefore, the uv map of the mesh should not have
overlapping faces.
Differential Revision: https://developer.blender.org/D15440
This patch contains an initial set of nodes to access basic
mesh topology information, as explored in T100020.
The nodes allow six direct topology mappings for meshes:
- **Corner -> Face** The face a corner is in, the index in the face
- **Vertex -> Edge** Choose an edge attached to the vertex
- **Vertex -> Corner** Choose a corner attached to the vertex
- **Corner -> Edge** The next and previous edge at each face corner
- **Corner -> Vertex** The vertex associated with a corner
- **Corner -> Corner** Offset a corner index within a face
And two new topology mappings for curves:
- **Curve -> Points** Choose a point within a curve
- **Point -> Curve** The curve a point is in, the index in the curve
The idea is that some of the 16 possible mesh mappings are more
important, and that this is a useful set of nodes to start exploring
this area. For mappings with an arbitrary number of connections, we
must sort them and use an index to choose a single element, because
geometry nodes does not support list fields. Note that the sort
index has repeating behavior as it goes over the "Total" number of
connections, and negative sort indices choose from the end.
Currently which of the "start" elements is used is determined by the
field context, so the "Field at Index" and "Interpolate Domain" nodes
will be quite important. Also, currently the "Sort Index" inputs are
clamped to the number of connections.
One important feature that isn't implemented here is using the winding
order for the output elements. This can be a separate mode for some
of these nodes. It will be optional because of the performance impact.
There are several todos for separate commits after this:
- Rename "Control Point Neighbors" to be consistent with this naming
- Version away the "Vertex Neighbors" node which is fully redundant now
- Implement a special case for when no weights are used for performance
- De-duplicating some of the sorting logic between the nodes
- Improve performance and memory use of topology mappings
- Look into caching some of the mappings on meshes
Differential Revision: https://developer.blender.org/D16029
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.
**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
its active or not.
**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
When pinned, the spreadsheet still references the viewer node even
when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
the active viewer.
**Attribute**
* When a field is linked to the second input of the viewer node it is
displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
automatically. This does not work in all cases. It falls back to the
face corner domain on meshes and the point domain on curves. When
necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.
**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
by disabling the "Viewer Node" option in the "View" menu.
**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
attribute.
* The ground truth for the active viewer node is stored in the workspace
now. Node editors, spreadsheets and viewports retrieve the active
viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
the viewed geometry of the corresponding object is part of the iterator
instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
"preferred domain" for every field input. If there is not exactly one
preferred domain, the fallback is used.
Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
the values might have to be normalized or some should be drawn as arrays.
For now, we encourage users to build node groups that generate appropriate
viewer-geometry. We might include some of that functionality in future versions.
Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
nvidia gpus, to be investigated.
Differential Revision: https://developer.blender.org/D15954
This node allows access to the indices of neighboring control points
within a curve via an offset. This includes taking into consideration
curves that are cyclic.
Differential Revision: D13373