Commit Graph

9 Commits

Author SHA1 Message Date
ffc4c126f5 Cleanup: move public doc-strings into headers for 'blenkernel'
- Added space below non doc-string comments to make it clear
  these aren't comments for the symbols directly below them.
- Use doxy sections for some headers.
- Minor improvements to doc-strings.

Ref T92709
2021-12-07 17:38:48 +11:00
d4c868da9f Geometry Nodes: refactor virtual array system
Goals of this refactor:
* Simplify creating virtual arrays.
* Simplify passing virtual arrays around.
* Simplify converting between typed and generic virtual arrays.
* Reduce memory allocations.

As a quick reminder, a virtual arrays is a data structure that behaves like an
array (i.e. it can be accessed using an index). However, it may not actually
be stored as array internally. The two most important implementations
of virtual arrays are those that correspond to an actual plain array and those
that have the same value for every index. However, many more
implementations exist for various reasons (interfacing with legacy attributes,
unified iterator over all points in multiple splines, ...).

With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and
`GVMutableArray`) can be used like "normal values". They typically live
on the stack. Before, they were usually inside a `std::unique_ptr`. This makes
passing them around much easier. Creation of new virtual arrays is also
much simpler now due to some constructors. Memory allocations are
reduced by making use of small object optimization inside the core types.

Previously, `VArray` was a class with virtual methods that had to be overridden
to change the behavior of a the virtual array. Now,`VArray` has a fixed size
and has no virtual methods. Instead it contains a `VArrayImpl` that is
similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly,
unless a new virtual array implementation is added.

To support the small object optimization for many `VArrayImpl` classes,
a new `blender::Any` type is added. It is similar to `std::any` with two
additional features. It has an adjustable inline buffer size and alignment.
The inline buffer size of `std::any` can't be relied on and is usually too
small for our use case here. Furthermore, `blender::Any` can store
additional user-defined type information without increasing the
stack size.

Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:16:30 +01:00
40c3b8836b Geometry Nodes: Make Random ID a builtin attribute, remove sockets
In order to address feedback that the "Stable ID" was not easy enough
to use, remove the "Stable ID" output from the distribution node and
the input from the instance on points node. Instead, the nodes write
or read a builtin named attribute called `id`. In the future we may
add more attributes like `edge_id` and `face_id`.

The downside is that more behavior is invisible, which is les
expected now that most attributes are passed around with node links.
This behavior will have to be explained in the manual.

The random value node's "ID" input that had an implicit index input
is converted to a special implicit input that uses the `id` attribute
if possible, but otherwise defaults to the index. There is no way to
tell in the UI which it uses, except by knowing that rule and checking
in the spreadsheet for the id attribute.

Because it isn't always possible to create stable randomness, this
attribute does not always exist, and it will be possible to remove it
when we have the attribute remove node back, to improve performance.

Differential Revision: https://developer.blender.org/D12903
2021-10-20 10:54:54 -05:00
5cf6f570c6 Geometry Nodes: use virtual arrays in internal attribute api
A virtual array is a data structure that is similar to a normal array
in that its elements can be accessed by an index. However, a virtual
array does not have to be a contiguous array internally. Instead, its
elements can be layed out arbitrarily while element access happens
through a virtual function call. However, the virtual array data
structures are designed so that the virtual function call can be avoided
in cases where it could become a bottleneck.

Most commonly, a virtual array is backed by an actual array/span or
is a single value internally, that is the same for every index.
Besides those, there are many more specialized virtual arrays like the
ones that provides vertex positions based on the `MVert` struct or
vertex group weights.

Not all attributes used by geometry nodes are stored in simple contiguous
arrays. To provide uniform access to all kinds of attributes, the attribute
API has to provide virtual array functionality that hides the implementation
details of attributes.

Before this refactor, the attribute API provided its own virtual array
implementation as part of the `ReadAttribute` and `WriteAttribute` types.
That resulted in unnecessary code duplication with the virtual array system.
Even worse, it bound many algorithms used by geometry nodes to the specifics
of the attribute API, even though they could also use different data sources
(such as data from sockets, default values, later results of expressions, ...).

This refactor removes the `ReadAttribute` and `WriteAttribute` types and
replaces them with `GVArray` and `GVMutableArray` respectively. The `GV`
stands for "generic virtual". The "generic" means that the data type contained
in those virtual arrays is only known at run-time. There are the corresponding
statically typed types `VArray<T>` and `VMutableArray<T>` as well.

No regressions are expected from this refactor. It does come with one
improvement for users. The attribute API can convert the data type
on write now. This is especially useful when writing to builtin attributes
like `material_index` with e.g. the Attribute Math node (which usually
just writes to float attributes, while `material_index` is an integer attribute).

Differential Revision: https://developer.blender.org/D10994
2021-04-17 16:41:39 +02:00
c6ff722a1f Spreadsheet: support showing data of specific node
Previously, the spreadsheet editor could only show data of the original
and of the final evaluated object. Now it is possible to show the data
at some intermediate stages too.

For that the mode has to be set to "Node" in the spreadsheet editor.
Furthermore, the preview of a specific node has to be activated by
clicking the new icon in the header of geometry nodes.

The exact ui of this feature might be refined in upcoming commits.
It is already very useful for debugging node groups in it's current
state though.

Differential Revision: https://developer.blender.org/D10875
2021-04-08 17:35:37 +02:00
3a68dcb1e6 Cleanup: allow looking up size of unsupported domains
There isn't really a reason for not supporting it.
2021-03-23 16:56:38 +01:00
2966871a7a Geometry Nodes: Revert current normal attribute implementation
After further thought, the implementation of the "normal" attribute
from D10541 is not the best approach to expose this data, mainly
because it blindly copied existing design rather than using the
best method in the context of the generalized attribute system.

In Blender, vertex normals are simply a cache of the average normals
from the surrounding / connected faces. Because we have automatic
interpolation between domains already, we don't need a special
`vertex_normal` attribute for this case, we can just let the
generalized interpolation do the hard work where necessary,
simplifying the set of built-in attributes to only include the
`normal` attribute from faces.

The fact that vertex normals are just a cache also raised another
issue, because the cache could be dirty, so mutex locks were
necessary to calculate normals. That isn't necessarily a problem,
but it's nice to avoid where possible.

Another downside of the current attribute naming is that after the
point distribute node there would be two normal attributes.

This commit reverts the `vertex_normal` attribute so that
it can be replaced by the implementation in D10677.

Differential Revision: https://developer.blender.org/D10676
2021-03-13 14:05:00 -05:00
368647bd25 Geometry Nodes: move geometry component type enum to C
This allows us to use it in rna for the spreadsheet editor.
2021-03-10 11:53:31 +01:00
9ce950daab Cleanup: Move geometry component implementations to separate files
Currently the implementations specific to each geometry type are in
the same file. This makes it difficult to tell which code is generic
for all component types and which is specific to a certain type.
The two files, `attribute_access.cc`, and `geometry_set.cc` are
also getting quite long.

This commit splits up the implementation for every geometry component,
and adds an internal header file for the common parts of the attribute
access code. This was discussed with Jacques Lucke.
2021-03-08 11:41:23 -05:00