Required by Metal backend for efficient shader compilation. EEVEE material
resource binding permutations now controlled via CreateInfo and selected
based on material options. Other existing CreateInfo's also modified to
ensure explicitness for depth-writing mode. Other missing bindings also
addressed to ensure full compliance with the Metal backend.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16243
This commit removes all EEVEE specific code from the `gpu_shader_material*.glsl`
files. It defines a clear interface to evaluate the closure nodes leaving
more flexibility to the render engine.
Some of the long standing workaround are fixed:
- bump mapping support is no longer duplicating a lot of node and is instead
compiled into a function call.
- bump rewiring to Normal socket is no longer needed as we now use a global
`g_data.N` for that.
Closure sampling with upstread weight eval is now supported if the engine needs
it.
This also makes all the material GLSL sources use `GPUSource` for better
debugging experience. The `GPUFunction` parsing now happens in `GPUSource`
creation.
The whole `GPUCodegen` now uses the `ShaderCreateInfo` and is object type
agnostic. Is has also been rewritten in C++.
This patch changes a view behavior for EEVEE:
- Mix shader node factor imput is now clamped.
- Tangent Vector displacement behavior is now matching cycles.
- The chosen BSDF used for SSR might change.
- Hair shading may have very small changes on very large hairs when using hair
polygon stripes.
- ShaderToRGB node will remove any SSR and SSS form a shader.
- SSS radius input now is no longer a scaling factor but defines an average
radius. The SSS kernel "shape" (radii) are still defined by the socket default
values.
Appart from the listed changes no other regressions are expected.
MSL follows C++ standard convention, and such variable declarations within switch statements must have their scope localised within each case. Adding braces in all cases ensures correct behaviour and avoids 'case ... bypass initialization of local variable' compilation error.
struct initialisation to follow C++ rules for Metal. Implicit constructors replaced with either explicit constructors or list-initialization where appropriate.
Ref T96261
Authored by Apple: Michael Parkin-White
Reviewed By: fclem
Maniphest Tasks: T96261
Differential Revision: https://developer.blender.org/D14451
Up lower clamp on spec_angle to prevent NaN from being generated on intel GPUs at low roughness.
Fixes T88754
Reviewed By: fclem
Maniphest Tasks: T88754
Differential Revision: https://developer.blender.org/D12508
Accumulate error caused by the low amount of integration slices and
correct it for the low roughness surfaces.
This increases light leak but it is less distracting than dark fringe
everywhere.
The sampling is now optimum with every samples being at least one pixel
appart. Also use a squared repartition to improve the sampling near the
center.
This also removes the thickness heuristic since it seems to remove
a lot of details and bias the AO too much.
This removes the need for per mipmap scalling factor and trilinear interpolation
issues. We pad the texture so that all mipmaps have pixels in the next mip.
This simplifies the downsampling shader too.
This also change the SSR radiance buffer as well in the same fashion.
This adds an approximation of inverted AO by reversing the max horizon
search (becoming a min horizon). The horizons are correctly clamped in
the reverse direction to the shading and geometric normals.
The arc integration is untouched as it seems to be symetrical.
The limitation of this technique is that since it is still screen-space
AO you don't get other hidden surfaces occlusion. This is more
problematic in the case of inverted AO than for normal AO but it's
better than no support AO.
Support of distance parameter was easy thanks to recent AO refactor.
- Fix noise/banding artifact on distant geometry.
- Fix overshadowing on un-occluded surfaces at grazing angle producing "fresnel"
like shadowing. Some of it still appears but this is caused to the low number
of horizons per pixel.
- Improve performance by using a fixed number of samples and fixing the
sampling area size. A better sampling pattern is planned to recover
the lost precision on large AO radius.
- Improved normal reconstruction for the AO pass.
- Improve Bent Normal reconstruction resulting in less faceted look on
smoothed geometry.
- Add Thickness heuristic to avoid overshadowing of thin objects.
Factor is currently hardcoded.
- Add bent normal support to Glossy reflections.
- Change Glossy occlusion to give less light leaks from lightprobes.
It can overshadow on smooth surface but this should be mitigated by
using SSR.
- Use Bent Normal for rough Glossy surfaces.
- Occlusion is now correctly evaluated for each BSDF. However this does make
everything slower. This is mitigated by the fact the search is a lot faster
than before.
This refactor was needed for some reasons:
- closure_lit_lib.glsl was unreadable and could not be easily extended to use new features.
- It was generating ~5K LOC for any shader. Slowing down compilation.
- Some calculations were incorrect and BSDF/Closure code had lots of workaround/hacks.
What this refactor does:
- Add some macros to define the light object loops / eval.
- Clear separation between each closures which now have separate files. Each closure implements the eval functions.
- Make principled BSDF a bit more correct in some cases (specular coloring, mix between glass and opaque).
- The BSDF term are applied outside of the eval function and on the whole lighting (was separated for lights before).
- Make light iteration last to avoid carrying more data than needed.
- Makes sure that all inputs are within correct ranges before evaluating the closures (use `safe_normalize` on normals).
- Making each BSDF isolated means that we might carry duplicated data (normals for instance) but this should be optimized by compilers.
- Makes Translucent BSDF its own closure type to avoid having to disable raytraced shadows using hacks.
- Separate transmission roughness is now working on Principled BSDF.
- Makes principled shader variations using constants. Removing a lot of duplicated code. This needed `const` keyword detection in `gpu_material_library.c`.
- SSR/SSS masking and data loading is a bit more consistent and defined outside of closure eval. The loading functions will act as accumulator if the lighting is not to be separated.
- SSR pass now do a full deferred lighting evaluation, including lights, in order to avoid interference with the closure eval code. However, it seems that the cost of having a global SSR toggle uniform is making the surface shader more expensive (which is already the case, by the way).
- Principle fully black specular tint now returns black instead of white.
- This fixed some artifact issue on my AMD computer on normal surfaces (which might have been some uninitialized variables).
- This touched the Ambient Occlusion because it needs to be evaluated for each closure. But to avoid the cost of this, we use another approach to just pass the result of the occlusion on interpolated normals and modify it using the bent normal for each Closure. This tends to reduce shadowing. I'm still looking into improving this but this is out of the scope of this patch.
- Performance might be a bit worse with this patch since it is more oriented towards code modularity. But not by a lot.
Render tests needs to be updated after this.
Reviewed By: jbakker
Differential Revision: https://developer.blender.org/D10390
# Conflicts:
# source/blender/draw/engines/eevee/eevee_shaders.c
# source/blender/draw/engines/eevee/shaders/common_utiltex_lib.glsl
# source/blender/draw/intern/shaders/common_math_lib.glsl
- add the use of DRWShaderLibrary to EEVEE's glsl codebase to reduce code
complexity and duplication.
- split bsdf_common_lib.glsl into multiple sub library which are now shared
with other engines.
- the surface shader code is now more organised and have its own files.
- change default world to use a material nodetree and make lookdev shader
more clear.
Reviewed By: jbakker
Differential Revision: https://developer.blender.org/D8306
These are the modifications:
-With DRW modification we reduce the number of passes we need to populate.
-Rename passes for consistent naming.
-Reduce complexity in code compilation
-Cleanup how renderpass accumulation passes are setup, using pass instances.
-Make sculpt mode compatible with shadows
-Make hair passes compatible with SSS
-Error shader and lookdev materials now use standalone materials.
-Support default shader (world and material) using a default nodetree internally.
-Change BLEND_CLIP to be emulated by gpu nodetree. Making less shader variations.
-Use BLI_memblock for cache memory allocation.
-Renderpasses are handled by switching a UBO ref bind.
One major hack in this patch is the use of modified pointer as ghash keys.
This rely on the assumption that the keys will never overlap because the
number of options per key will never be bigger than the pointed struct.
The use of one single nodetree to support default material is also a bit hacky
since it won't support concurent usage of this nodetree.
(see EEVEE_shader_default_surface_nodetree)
Another change is that objects with shader errors now appear solid magenta instead
of shaded magenta. This is only because of code reuse purpose but could be changed
if really needed.
Reviewed By: jbakker
Differential Revision: https://developer.blender.org/D7642
This changes the bent normal effect to be a bit more subtle.
I also tuned down the bent normal blending factor so mesh faceted look may
appear more in occluded regions. this is to increase the fidelity of the
indirect lighting. This blending might be a parameter in the future.
Based the calculation on "Bent Normals and Cones in Screen-space"
by O. Klehm, T. Ritschel, E. Eisemann, H.-P. Seidel
This is an optimization / cleanup commit.
The use of a global ubo remove lots of uniform lookups and only transfert data when needed.
Lots of renaming for more consistent codestyle.
This means we have less overall noise for rendered image.
SSR, AO, and Refraction are affected by this change.
SSR still exhibit artifacts because the reconstruction pattern needs to change every frame (TODO).
This includes big improvement:
- The horizon search is decoupled from the BSDF evaluation. This means using multiple BSDF nodes have a much lower impact when enbaling AO.
- The horizon search is optimized by splitting the search into 4 corners searching similar directions to help which GPU cache coherence.
- The AO options are now uniforms and do not trigger shader recompilation (aka. freeze UI).
- Include a quality slider similar to the SSR one.
- Add a switch for disabling bounce light approximation.
- Fix problem with Bent Normals when occlusion get very dark.
- Add a denoise option to that takes the neighbors pixel values via glsl derivatives. This reduces noise but exhibit 2x2 blocky artifacts.
The downside : Separating the horizon search uses more memory (~3MB for each samples on HD viewport). We could lower the bit depth to 4bit per horizon but it produce noticeable banding (might be fixed with some dithering).
I couldn't reproduce either, but calling min() with different argument
data types and indexing vectors with an index not known at compile time
seem likely to cause problems.
Ref T52404, T52404.
This fix a bug when occluder are on the edge of the screen and occludes more than they should.
Grouped the texture fetches together and clamp the ray at the border of the screen.
Also add a few util functions.
Implement GTAO (Ground Truth Ambient Occlusion) which is a special case of Horizon Based Ambient Occlusion that is more physically accurate.
Also add a bent normal option to sample indirect irradiance (diffuse lighting) with the least occluded direction.