Commit Graph

13 Commits

Author SHA1 Message Date
4b9ff3cd42 Cleanup: comment blocks, trailing space in comments 2021-06-24 15:59:34 +10:00
Jeroen Bakker
cb8a6814fd Blenlib: Explicit Colors.
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.

Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.

The storage structs can hold 4 channels (r, g, b and a).

Usage:

Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
    BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```

The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.

- Conversions between spaces (theme <=> scene linear) should always be done by
  invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
  should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
  `unpremultiply_alpha` methods.

# Encoding.

Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.

# Precision

Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).

# Alpha conversion

Alpha conversion is only supported in SceneLinear space.

Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
  of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.

Reviewed By: JacquesLucke, brecht

Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:16:54 +02:00
00955cd31e Revert "Blenlib: Explicit Colors."
This reverts commit fd94e03344.
does not compile against latest master.
2021-05-25 17:03:54 +02:00
Jeroen Bakker
fd94e03344 Blenlib: Explicit Colors.
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.

Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.

The storage structs can hold 4 channels (r, g, b and a).

Usage:

Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
    BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```

The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.

- Conversions between spaces (theme <=> scene linear) should always be done by
  invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
  should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
  `unpremultiply_alpha` methods.

# Encoding.

Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.

# Precision

Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).

# Alpha conversion

Alpha conversion is only supported in SceneLinear space.

Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
  of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.

Reviewed By: JacquesLucke, brecht

Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:01:26 +02:00
bf23083852 Cleanup: use our own code style for doxy-gen comment blocks 2021-05-12 21:58:25 +10:00
8216b759e9 Geometry Nodes: Initial basic curve data support
This patch adds initial curve support to geometry nodes. Currently
there is only one node available, the "Curve to Mesh" node, T87428.

However, the aim of the changes here is larger than just supporting
curve data in nodes-- it also uses the opportunity to add better spline
data structures, intended to replace the existing curve evaluation code.
The curve code in Blender is quite old, and it's generally regarded as
some of the messiest, hardest-to-understand code as well. The classes
in `BKE_spline.hh` aim to be faster, more extensible, and much more
easily understandable. Further explanation can be found in comments in
that file.

Initial builtin spline attributes are supported-- reading and writing
from the `cyclic` and `resolution` attributes works with any of the
attribute nodes. Also, only Z-up normal calculation is implemented
at the moment, and tilts do not apply yet.

**Limitations**
 - For now, you must bring curves into the node tree with an "Object
   Info" node. Changes to the curve modifier stack will come later.
 - Converting to a mesh is necessary to visualize the curve data.

Further progress can be tracked in: T87245
Higher level design document: https://wiki.blender.org/wiki/Modules/Physics_Nodes/Projects/EverythingNodes/CurveNodes

Differential Revision: https://developer.blender.org/D11091
2021-05-03 12:29:17 -05:00
ddaeaa4b98 Geometry Nodes: Add a template utility to mix two attribute values
This is just linear interpolation, but it's nice to have an equivalent
to `mix3` for only two values. It will be used for interpolation of
values between bezier spline control points.
2021-04-29 21:52:34 -05:00
1dd17726f2 Geometry Nodes: extract mesh surface sampling functions to separate file 2021-04-21 17:02:19 +02:00
b9cbf7fc80 Geometry Nodes: add utility to convert CPPType to static type 2021-04-21 16:57:43 +02:00
9a2e623372 Cleanup: use BLI_assert_unreachable in some places 2021-03-23 16:49:47 +01:00
7b84a5a370 Cleanup: spelling 2021-02-10 09:38:24 +11:00
17672efa0e Geometry Nodes: initial attribute interpolation between domains
This patch adds support for accessing corner attributes on the point domain.
The immediate benefit of this is that now (interpolated) uv coordinates are
available on points without having to use the Point Distribute node.

This is also very useful for parts of T84297, because once we have vertex
colors, those will also be available on points, even though they are stored
per corner.

Differential Revision: https://developer.blender.org/D10305
2021-02-09 11:45:04 +01:00
a51584dc70 Geometry Nodes: transfer corner and point attributes in Point Distribute node
If the mesh has any corner or point attributes (e.g. vertex weights or
uv maps), those attributes will now be available on the generated points
as well.

Other domains can be supported as well. I just did not implement those yet,
because we don't have a use case for them.

Differential Revision: https://developer.blender.org/D10114
2021-01-15 12:00:38 +01:00