With this commit, curve objects support the geometry nodes modifier.
Curves objects now evaluate to `CurveEval` unless there was a previous
implicit conversion (tessellating modifiers, mesh modifiers, or the
settings in the curve "Geometry" panel). In the new code, curves are
only considered to be the wire edges-- any generated surface is a mesh
instead, stored in the evaluated geometry set.
The consolidation of concepts mentioned above allows remove a lot of
code that had to do with maintaining the `DispList` type temporarily
for modifiers and rendering. Instead, render engines see a separate
object for the mesh from the mesh geometry component, and when the
curve object evaluates to a curve, the `CurveEval` is always used for
drawing wire edges.
However, currently the `DispList` type is still maintained and used as
an intermediate step in implicit mesh conversion. In the future, more
uses of it could be changed to use `CurveEval` and `Mesh` instead.
This is mostly not changed behavior, it is just a formalization of
existing logic after recent fixes for 2.8 versions last year and two
years ago. Also, in the future more functionality can be converted
to nodes, removing cases of implicit conversions. For more discussion
on that topic, see T89676.
The `use_fill_deform` option is removed. It has not worked properly
since 2.62, and the choice for filling a curve before or after
deformation will work much better and be clearer with a node system.
Applying the geometry nodes modifier to generate a curve is not
implemented with this commit, so applying the modifier won't work
at all. This is a separate technical challenge, and should be solved
in a separate step.
Differential Revision: https://developer.blender.org/D11597
When done from the Properties Editor, the context's modifier should be
used (this is where the button is located), when done from elsewhere,
the active modifier is still the way to go (since the context modifier is
not available then)
Maniphest Tasks: T89982
Differential Revision: https://developer.blender.org/D11972
The nodes were selected in new node groups because they are by default,
but there's no particular reason for them to be selected, and it can
be distracting.
Adding the modifier itself already adds a new node tree, which is
then displayed in the node editor because of the active object and
active modifier context. So there's no need to create the node tree
in the python code in this case.
This is the initial merge from the geometry-nodes branch.
Nodes:
* Attribute Math
* Boolean
* Edge Split
* Float Compare
* Object Info
* Point Distribute
* Point Instance
* Random Attribute
* Random Float
* Subdivision Surface
* Transform
* Triangulate
It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier.
Notes on the Generic attribute access API
The API adds an indirection for attribute access. That has the following benefits:
* Most code does not have to care about how an attribute is stored internally.
This is mainly necessary, because we have to deal with "legacy" attributes
such as vertex weights and attributes that are embedded into other structs
such as vertex positions.
* When reading from an attribute, we generally don't care what domain the
attribute is stored on. So we want to abstract away the interpolation that
that adapts attributes from one domain to another domain (this is not
actually implemented yet).
Other possible improvements for later iterations include:
* Actually implement interpolation between domains.
* Don't use inheritance for the different attribute types. A single class for read
access and one for write access might be enough, because we know all the ways
in which attributes are stored internally. We don't want more different internal
structures in the future. On the contrary, ideally we can consolidate the different
storage formats in the future to reduce the need for this indirection.
* Remove the need for heap allocations when creating attribute accessors.
It includes commits from:
* Dalai Felinto
* Hans Goudey
* Jacques Lucke
* Léo Depoix